Skip to main content
Log in

Bile acid signaling in the regulation of whole body metabolic and immunological homeostasis

  • Review
  • SPECIAL TOPIC: Gut microbiome and metabolism
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Bile acids (BAs) play a crucial role in nutrient absorption and act as key regulators of lipid and glucose metabolism and immune homeostasis. Through the enterohepatic circulation, BAs are synthesized, metabolized, and reabsorbed, with a portion entering the vascular circulation and distributing systemically. This allows BAs to interact with receptors in all major organs, leading to organ-organ interactions that regulate both local and global metabolic processes, as well as the immune system. This review focuses on the whole-body effects of BA-mediated metabolic and immunological regulation, including in the brain, heart, liver, intestine, eyes, skin, adipose tissue, and muscle. Targeting BA synthesis and receptor signaling is a promising strategy for the development of novel therapies for various diseases throughout the body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achudhan, D., Liu, S.C., Lin, Y.Y., Huang, C.C., Tsai, C.H., Ko, C.Y., Chiang, I.P., Kuo, Y.H., and Tang, C.H. (2021). Antcin K inhibits TNF-α, IL-1β and IL-8 expression in synovial fibroblasts and ameliorates cartilage degradation: implications for the treatment of rheumatoid arthritis. Front Immunol 12, 790925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahlberg, J., Angelin, B., Björkhem, I., and Einarsson, K. (1977). Individual bile acids in portal venous and systemic blood serum of fasting man. Gastroenterology 73, 1377–1382.

    Article  CAS  PubMed  Google Scholar 

  • Albaugh, V.L., Flynn, C.R., Cai, S., Xiao, Y., Tamboli, R.A., and Abumrad, N.N. (2015). Early increases in bile acids post Roux-en-Y gastric bypass are driven by insulin-sensitizing, secondary bile acids. J Clin Endocrinol Metab 100, E1225–E1233.

    Article  PubMed Central  Google Scholar 

  • Alemi, F., Kwon, E., Poole, D.P., Lieu, T.M., Lyo, V., Cattaruzza, F., Cevikbas, F., Steinhoff, M., Nassini, R., Materazzi, S., et al. (2013). The TGR5 receptor mediates bile acid-induced itch and analgesia. J Clin Invest 123, 1513–1530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelin, B., Björkhem, I., Einarsson, K., and Ewerth, S. (1982). Hepatic uptake of bile acids in man. J Clin Invest 70, 724–731.

    Article  CAS  PubMed  Google Scholar 

  • Aranha, M.M., Cortez-Pinto, H., Costa, A., da Silva, I.B.M., Camilo, M.E., de Moura, M.C., and Rodrigues, C.M.P. (2008). Bile acid levels are increased in the liver of patients with steatohepatitis. Eur J Gastroenterol Hepatol 20, 519–525.

    Article  CAS  PubMed  Google Scholar 

  • Baloni, P., Funk, C.C., Yan, J., Yurkovich, J.T., Kueider-Paisley, A., Nho, K., Heinken, A., Jia, W., Mahmoudiandehkordi, S., Louie, G., et al. (2020). Metabolic network analysis reveals altered bile acid synthesis and metabolism inAlzheimer’s disease. Cell Rep Med 1, 100138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bapat, S.P., Whitty, C., Mowery, C.T., Liang, Y., Yoo, A., Jiang, Z., Peters, M.C., Zhang, L., Vogel, I., Zhou, C., et al. (2022). Obesity alters pathology and treatment response in inflammatory disease. Nature 604, 337–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biagioli, M., Carino, A., Cipriani, S., Francisci, D., Marchianò, S., Scarpelli, P., Sorcini, D., Zampella, A., and Fiorucci, S. (2017). The bile acid receptor GPBAR1 regulates the M1/M2 phenotype of intestinal macrophages and activation of GPBAR1 rescues mice from murine colitis. J Immunol 199, 718–733.

    Article  CAS  PubMed  Google Scholar 

  • Biddinger, S.B., Haas, J.T., Yu, B.B., Bezy, O., Jing, E., Zhang, W., Unterman, T.G., Carey, M.C., and Kahn, C.R. (2008). Hepatic insulin resistance directly promotes formation of cholesterol gallstones. Nat Med 14, 778–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnet, C., and Brézin, A. (2020). Uveitis: diagnosis and work-up. J Fr Ophtalmol 43, 145–151.

    Article  CAS  Google Scholar 

  • Bookout, A.L., de Groot, M.H.M., Owen, B.M., Lee, S., Gautron, L., Lawrence, H.L., Ding, X., Elmquist, J.K., Takahashi, J.S., Mangelsdorf, D.J., et al. (2013). FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med 19, 1147–1152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borgius, L.J., Steffensen, K.R., Gustafsson, J.å., and Treuter, E. (2002). Glucocorticoid signaling is perturbed by the atypical orphan receptor and corepressor SHP. J Biol Chem 277, 49761–49766.

    Article  CAS  PubMed  Google Scholar 

  • Boussicault, L., Alves, S., Lamazière, A., Planques, A., Heck, N., Moumné, L., Despres, G., Bolte, S., Hu, A., Pagès, C., et al. (2016). CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington’s disease. Brain 139, 953–970.

    Article  PubMed Central  Google Scholar 

  • Broeders, E.P.M., Nascimento, E.B.M., Havekes, B., Brans, B., Roumans, K.H.M., Tailleux, A., Schaart, G., Kouach, M., Charton, J., Deprez, B., et al. (2015). The bile acid chenodeoxycholic acid increases human brown adipose tissue activity. Cell Metab 22, 418–426.

    Article  CAS  PubMed  Google Scholar 

  • Brown, A.J., and Jessup, W. (2009). Oxysterols: sources, cellular storage and metabolism, and new insights into their roles in cholesterol homeostasis. Mol Aspects Med 30, 111–122.

    Article  CAS  PubMed  Google Scholar 

  • Browning, M.G., Pessoa, B.M., Khoraki, J., and Campos, G.M. (2019). Changes in bile acid metabolism, transport, and signaling as central drivers for metabolic improvements after bariatric surgery. Curr Obes Rep 8, 175–184.

    Article  PubMed  Google Scholar 

  • Butterworth, R.F. (2016). Neurosteroids in hepatic encephalopathy: novel insights and new therapeutic opportunities. J Steroid Biochem Mol Biol 160, 94–97.

    Article  CAS  Google Scholar 

  • Campbell, C., Marchildon, F., Michaels, A.J., Takemoto, N., van der Veeken, J., Schizas, M., Pritykin, Y., Leslie, C.S., Intlekofer, A.M., Cohen, P., et al. (2020a). FXR mediates T cell-intrinsic responses to reduced feeding during infection. Proc Natl Acad Sci USA 117, 33446–33454.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, C., McKenney, P.T., Konstantinovsky, D., Isaeva, O.I., Schizas, M., Verter, J., Mai, C., Jin, W.B., Guo, C.J., Violante, S., et al. (2020b). Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581, 475–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cariou, B., van Harmelen, K., Duran-Sandoval, D., van Dijk, T.H., Grefhorst, A., Abdelkarim, M., Caron, S., Torpier, G., Fruchart, J.C., Gonzalez, F.J., et al. (2006). The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem 281, 11039–11049.

    Article  CAS  PubMed  Google Scholar 

  • Charach, G., Argov, O., Geiger, K., Charach, L., Rogowski, O., and Grosskopf, I. (2017). Diminished bile acids excretion is a risk factor for coronary artery disease: 20-year follow up and long-term outcome. Therap Adv Gastroenterol 11, 1756283X1774342.

    Article  Google Scholar 

  • Charach, G., Rabinovich, A., Argov, O., Weintraub, M., and Rabinovich, P. (2012). The role of bile acid excretion in atherosclerotic coronary artery disease. Int J Vasc Med 2012, 1–3.

    Article  Google Scholar 

  • Chen, C., Hu, B., Wu, T., Zhang, Y., Xu, Y., Feng, Y., and Jiang, H. (2016). Bile acid profiles in diabetic (db/db) mice and their wild type littermates. J Pharm Biomed Anal 131, 473–481.

    Article  CAS  PubMed  Google Scholar 

  • Chen, T., You, Y., Xie, G., Zheng, X., Zhao, A., Liu, J., Zhao, Q., Wang, S., Huang, F., Rajani, C., et al. (2018a). Strategy for an association study of the intestinal microbiome and brain metabolome across the lifespan of rats. Anal Chem 90, 2475–2483.

    Article  CAS  PubMed  Google Scholar 

  • Chen, W.G., Zheng, J.X., Xu, X., Hu, Y.M., and Ma, Y.M. (2018b). Hippocampal FXR plays a role in the pathogenesis of depression: a preliminary study based on lentiviral gene modulation. Psychiatry Res 264, 374–379.

    Article  Google Scholar 

  • Chen, Y., Lu, J., Nemati, R., Plank, L.D., and Murphy, R. (2019). Acute changes of bile acids and FGF19 after sleeve gastrectomy and Roux-en-Y gastric bypass. Obes Surg 29, 3605–3621.

    Article  Google Scholar 

  • Chiang, J.Y.L. (2004). Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J Hepatol 40, 539–551.

    Article  CAS  PubMed  Google Scholar 

  • Chiang, J.Y.L., and Ferrell, J.M. (2019). Bile acids as metabolic regulators and nutrient sensors. Annu Rev Nutr 39, 175–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarysse, S., Tack, J., Lammert, F., Duchateau, G., Reppas, C., and Augustijns, P. (2009). Postprandial evolution in composition and characteristics of human duodenal fluids in different nutritional states. J Pharm Sci 98, 1177–1192.

    Article  CAS  PubMed  Google Scholar 

  • Clifford, B.L., Sedgeman, L.R., Williams, K.J., Morand, P., Cheng, A., Jarrett, K.E., Chan, A.P., Brearley-Sholto, M.C., Wahlström, A., Ashby, J.W., et al. (2021). FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption. Cell Metab 33, 1671–1684.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson, P.A., Lan, T., and Rao, A. (2009). Bile acid transporters. J Lipid Res 50, 2340–2357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Aguiar Vallim, T.Q., Tarling, E.J., Ahn, H., Hagey, L.R., Romanoski, C. E., Lee, R.G., Graham, M.J., Motohashi, H., Yamamoto, M., and Edwards, P.A. (2015). MAFG is a transcriptional repressor of bile acid synthesis and metabolism. Cell Metab 21, 298–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degirolamo, C., Sabbà, C., and Moschetta, A. (2016). Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat Rev Drug Discov 15, 51–69.

    Article  CAS  Google Scholar 

  • Di Ciaula, A., Garruti, G., Lunardi Baccetto, R., Molina-Molina, E., Bonfrate, L., Wang, D.Q.H., and Portincasa, P. (2017). Bile acid physiology. Ann Hepatol 16, S4–S14.

    Article  CAS  PubMed  Google Scholar 

  • Do, T.H., Ma, F., Andrade, P.R., Teles, R., de Andrade Silva, B.J., Hu, C., Espinoza, A., Hsu, J.E., Cho, C.S., Kim, M., et al. (2022). TREM2 macrophages induced by human lipids drive inflammation in acne lesions. Sci Immunol 7, eabo2787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Düfer, M., Hörth, K., Wagner, R., Schittenhelm, B., Prowald, S., Wagner, T. F.J., Oberwinkler, J., Lukowski, R., Gonzalez, F.J., Krippeit-Drews, P., et al. (2012). Bile acids acutely stimulate insulin secretion of mouse β-cells via farnesoid X receptor activation and KATP channel inhibition. Diabetes 61, 1479–1489.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eyles, D.W., Smith, S., Kinobe, R., Hewison, M., and McGrath, J.J. (2005). Distribution of the vitamin D receptor and 1α-hydroxylase in human brain. J Chem Neuroanat 29, 21–30.

    Article  CAS  PubMed  Google Scholar 

  • Ferrebee, C.B., and Dawson, P.A. (2015). Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids. Acta Pharm Sin B 5, 129–134.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiorucci, S., Biagioli, M., Zampella, A., and Distrutti, E. (2018). Bile acids activated receptors regulate innate immunity. Front Immunol 9, 1853.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiorucci, S., Distrutti, E., Carino, A., Zampella, A., and Biagioli, M. (2021). Bile acids and their receptors in metabolic disorders. Prog Lipid Res 82, 101094.

    Article  CAS  PubMed  Google Scholar 

  • Fu, X., Chen, Y., and Chen, D. (2021). The role of gut microbiome in autoimmune uveitis. Ophthalmic Res 64, 168–177.

    Article  CAS  PubMed  Google Scholar 

  • Gadaleta, R.M., van Erpecum, K.J., Oldenburg, B., Willemsen, E.C.L., Renooij, W., Murzilli, S., Klomp, L.W.J., Siersema, P.D., Schipper, M. E.I., Danese, S., et al. (2011). Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 60, 463–472.

    Article  CAS  Google Scholar 

  • Gohlke, H., Schmitz, B., Sommerfeld, A., Reinehr, R., and Häussinger, D. (2013). α5β1-integrins are sensors for tauroursodeoxycholic acid in hepatocytes. Hepatology 57, 1117–1129.

    Article  CAS  PubMed  Google Scholar 

  • Hadjihambi, A., Harrison, I.F., Costas-Rodríguez, M., Vanhaecke, F., Arias, N., Gallego-Durán, R., Mastitskaya, S., Hosford, P.S., Olde Damink, S. W.M., Davies, N., et al. (2019). Impaired brain glymphatic flow in experimental hepatic encephalopathy. J Hepatol 70, 40–49.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton, J.P., Xie, G., Raufman, J.P., Hogan, S., Griffin, T.L., Packard, C. A., Chatfield, D.A., Hagey, L.R., Steinbach, J.H., and Hofmann, A.F. (2007). Human cecal bile acids: concentration and spectrum. Am J Physiol Gastrointest Liver Physiol 293, G256–G263.

    Article  CAS  PubMed  Google Scholar 

  • Han, M., Wang, S., Yang, N., Wang, X., Zhao, W., Saed, H.S., Daubon, T., Huang, B., Chen, A., Li, G., et al. (2020). Therapeutic implications of altered cholesterol homeostasis mediated by loss of CYP46A1 in human glioblastoma. EMBO Mol Med 12, e10924.

    Article  CAS  PubMed  Google Scholar 

  • Han, S.I., Studer, E., Gupta, S., Fang, Y., Qiao, L., Li, W., Grant, S., Hylemon, P.B., and Dent, P. (2004). Bile acids enhance the activity of the insulin receptor and glycogen synthase in primary rodent hepatocytes. Hepatology 39, 456–463.

    Article  CAS  PubMed  Google Scholar 

  • Hang, S., Paik, D., Yao, L., Kim, E., Trinath, J., Lu, J., Ha, S., Nelson, B. N., Kelly, S.P., Wu, L., et al. (2019). Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haselow, K., Bode, J.G., Wammers, M., Ehlting, C., Keitel, V., Kleinebrecht, L., Schupp, A.K., Häussinger, D., and Graf, D. (2013). Bile acids PKA-dependently induce a switch of the IL-10/IL-12 ratio and reduce proinflammatory capability of human macrophages. J Leukoc Biol 94, 1253–1264.

    Article  PubMed  Google Scholar 

  • Hertel, J., Harms, A.C., Heinken, A., Baldini, F., Thinnes, C.C., Glaab, E., Vasco, D.A., Pietzner, M., Stewart, I.D., Wareham, N.J., et al. (2019). Integrated analyses of microbiome and longitudinal metabolome data reveal microbial-host interactions on sulfur metabolism in Parkinson’s disease. Cell Rep 29, 1767–1777.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holzbach, R.T., Marsh, M.E., Freedman, M.R., Fazio, V.W., Lavery, I.C., and Jagelman, D.A. (1980). Portal vein bile acids in patients with severe inflammatory bowel disease. Gut 21, 428–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, J., Wang, C., Huang, X., Yi, S., Pan, S., Zhang, Y., Yuan, G., Cao, Q., Ye, X., and Li, H. (2021). Gut microbiota-mediated secondary bile acids regulate dendritic cells to attenuate autoimmune uveitis through TGR5 signaling. Cell Rep 36, 109726.

    Article  CAS  PubMed  Google Scholar 

  • Huang, F., Zheng, X., Ma, X., Jiang, R., Zhou, W., Zhou, S., Zhang, Y., Lei, S., Wang, S., Kuang, J., et al. (2019). Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nat Commun 10, 4971.

    Article  PubMed Central  Google Scholar 

  • Ibrahim, E., Diakonov, I., Arunthavarajah, D., Swift, T., Goodwin, M., McIlvride, S., Nikolova, V., Williamson, C., and Gorelik, J. (2018). Bile acids and their respective conjugates elicit different responses in neonatal cardiomyocytes: role of Gi protein, muscarinic receptors and TGR5. Sci Rep 8, 7110.

    Article  PubMed Central  Google Scholar 

  • Id Boufker, H., Lagneaux, L., Fayyad-Kazan, H., Badran, B., Najar, M., Wiedig, M., Ghanem, G., Laurent, G., Body, J.J., and Journé, F. (2011). Role of farnesoid X receptor (FXR) in the process of differentiation of bone marrow stromal cells into osteoblasts. Bone 49, 1219–1231.

    Article  PubMed  Google Scholar 

  • Inaba, T., Matsuda, M., Shimamura, M., Takei, N., Terasaka, N., Ando, Y., Yasumo, H., Koishi, R., Makishima, M., and Shimomura, I. (2003). Angiopoietin-like protein 3 mediates hypertriglyceridemia induced by the liver X receptor. J Biol Chem 278, 21344–21351.

    Article  CAS  Google Scholar 

  • Inagaki, T., Dutchak, P., Zhao, G., Ding, X., Gautron, L., Parameswara, V., Li, Y., Goetz, R., Mohammadi, M., Esser, V., et al. (2007). Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21. Cell Metab 5, 415–425.

    Article  CAS  PubMed  Google Scholar 

  • Jäntti, S.E., Kivilompolo, M., Öhrnberg, L., Pietiläinen, K.H., Nygren, H., Orešič, M., and Hyötyläinen, T. (2014). Quantitative profiling of bile acids in blood, adipose tissue, intestine, and gall bladder samples using ultra high performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 406, 7799–7815.

    Article  PubMed  Google Scholar 

  • Jayanthi, V., Sarika, S., Varghese, J., Vaithiswaran, V., Sharma, M., Reddy, M.S., Srinivasan, V., Reddy, G.M.M., Rela, M., and Kalkura, S. (2016). Composition of gallbladder bile in healthy individuals and patients with gallstone disease from North and South India. Ind J Gastroenterol 35, 347–353.

    Article  CAS  Google Scholar 

  • Jena, P.K., Sheng, L., Mcneil, K., Chau, T.Q., Yu, S., Kiuru, M., Fung, M. A., Hwang, S.T., and Wan, Y.J.Y. (2019). Long-term Western diet intake leads to dysregulated bile acid signaling and dermatitis with Th2 and Th17 pathway features in mice. J Dermatol Sci 95, 13–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, W., Xie, G., and Jia, W. (2018). Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol 15, 111–128.

    Article  CAS  PubMed  Google Scholar 

  • Jia, H., Li, Q., Zhou, C., Yu, M., Yang, Y., Zhang, H., Ding, G., Shang, H., and Zou, Z. (2016). Chronic unpredictive mild stress leads to altered hepatic metabolic profile and gene expression. Sci Rep 6, 23441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, W., Wei, M., Rajani, C., and Zheng, X. (2021). Targeting the alternative bile acid synthetic pathway for metabolic diseases. Protein Cell 12, 411–425.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, C., Xie, C., Li, F., Zhang, L., Nichols, R.G., Krausz, K.W., Cai, J., Qi, Y., Fang, Z.Z., Takahashi, S., et al. (2015a). Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J Clin Invest 125, 386–402.

    Article  PubMed  Google Scholar 

  • Jiang, C., Xie, C., Lv, Y., Li, J., Krausz, K.W., Shi, J., Brocker, C.N., Desai, D., Amin, S.G., Bisson, W.H., et al. (2015b). Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat Commun 6, 10166.

    Article  CAS  PubMed  Google Scholar 

  • Jiao, N., Baker, S.S., Chapa-Rodriguez, A., Liu, W., Nugent, C.A., Tsompana, M., Mastrandrea, L., Buck, M.J., Baker, R.D., Genco, R.J., et al. (2018). Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut 67, 1881–1891.

    Article  CAS  PubMed  Google Scholar 

  • Johnston, A., Ponzetti, K., Anwer, M.S., and Webster, C.R.L. (2011). cAMP-guanine exchange factor protection from bile acid-induced hepatocyte apoptosis involves glycogen synthase kinase regulation of c-Jun NH2-terminal kinase. Am J Physiol Gastrointest Liver Physiol 301, G385–G400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jørgensen, N.B., Dirksen, C., Bojsen-Møller, K.N., Kristiansen, V.B., Wulff, B.S., Rainteau, D., Humbert, L., Rehfeld, J.F., Holst, J.J., Madsbad, S., et al. (2015). Improvements in glucose metabolism early after gastric bypass surgery are not explained by increases in total bile acids and fibroblast growth factor 19 concentrations. J Clin Endocrinol Metab 100, E396–E406.

    Article  Google Scholar 

  • Kawamata, Y., Fujii, R., Hosoya, M., Harada, M., Yoshida, H., Miwa, M., Fukusumi, S., Habata, Y., Itoh, T., Shintani, Y., et al. (2003). A G protein-coupled receptor responsive to bile acids. J Biol Chem 278, 9435–9440.

    Article  CAS  PubMed  Google Scholar 

  • Keitel, V., Görg, B., Bidmon, H.J., Zemtsova, I., Spomer, L., Zilles, K., and Häussinger, D. (2010). The bile acid receptor TGR5 (Gpbar-1) acts as a neurosteroid receptor in brain. Glia 58, 1794–1805.

    Article  PubMed  Google Scholar 

  • Kempf, A., Tews, B., Arzt, M.E., Weinmann, O., Obermair, F.J., Pernet, V., Zagrebelsky, M., Delekate, A., Iobbi, C., Zemmar, A., et al. (2014). The sphingolipid receptor S1PR2 is a receptor for Nogo-a repressing synaptic plasticity. PLoS Biol 12, e1001763.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khalaf, K., Tornese, P., Cocco, A., and Albanese, A. (2022). Tauroursodeoxycholic acid: a potential therapeutic tool in neurodegenerative diseases. Transl Neurodegener 11, 33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kharitonenkov, A., Shiyanova, T.L., Koester, A., Ford, A.M., Micanovic, R., Galbreath, E.J., Sandusky, G.E., Hammond, L.J., Moyers, J.S., Owens, R.A., et al. (2005). FGF-21 as a novel metabolic regulator. J Clin Invest 115, 1627–1635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, K.H., Choi, S., Zhou, Y., Kim, E.Y., Lee, J.M., Saha, P.K., Anakk, S., and Moore, D.D. (2017). Hepatic FXR/SHP axis modulates systemic glucose and fatty acid homeostasis in aged mice. Hepatology 66, 498–509.

    Article  CAS  Google Scholar 

  • Kim, K.H., and Moore, D.D. (2017). Regulation of liver energy balance by the nuclear receptors farnesoid X receptor and peroxisome proliferator activated receptor α. Dig Dis 35, 203–209.

    Article  PubMed  Google Scholar 

  • Kiriyama, Y., and Nochi, H. (2019). The biosynthesis, signaling, and neurological functions of bile acids. Biomolecules 9, 232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong, B., Wang, L., Chiang, J.Y.L., Zhang, Y., Klaassen, C.D., and Guo, G. L. (2012). Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice. Hepatology 56, 1034–1043.

    Article  CAS  PubMed  Google Scholar 

  • Kopecky, C., Michlits, G., Säemann, M.D., and Weichhart, T. (2017). Pro- versus anti-inflammatory actions of HDLs in innate immunity. Cell Metab 26, 2–3.

    Article  CAS  Google Scholar 

  • Kotti, T.J., Ramirez, D.M.O., Pfeiffer, B.E., Huber, K.M., and Russell, D. W. (2006). Brain cholesterol turnover required for geranylgeraniol production and learning in mice. Proc Natl Acad Sci USA 103, 3869–3874.

    Article  CAS  PubMed  Google Scholar 

  • Lee, G. (2018). The balance of Th17 versus Treg cells in autoimmunity. Int J Mol Sci 19, 730.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, F., Jiang, C., Krausz, K.W., Li, Y., Albert, I., Hao, H., Fabre, K.M., Mitchell, J.B., Patterson, A.D., and Gonzalez, F.J. (2013). Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun 4, 2384.

    Article  PubMed  Google Scholar 

  • Lieu, T.M., Jayaweera, G., Zhao, P., Poole, D.P., Jensen, D., Grace, M., McIntyre, P., Bron, R., Wilson, Y.M., Krappitz, M., et al. (2014). The bile acid receptor TGR5 activates the TRPA1 channel to induce itch in mice. Gastroenterology 147, 1417–1428.

    Article  CAS  PubMed  Google Scholar 

  • Lu, W., Li, X., and Luo, Y. (2021). FGF21 in obesity and cancer: new insights. Cancer Lett 499, 5–13.

    Article  CAS  PubMed  Google Scholar 

  • Lu, X., Yang, R.R., Zhang, J.L., Wang, P., Gong, Y., Hu, W., Wu, Y., Gao, M., and Huang, C. (2018). Tauroursodeoxycholic acid produces antidepressant-like effects in a chronic unpredictable stress model of depression via attenuation of neuroinflammation, oxido-nitrosative stress, and endoplasmic reticulum stress. Fundam Clin Pharmacol 32, 363–377.

    Article  CAS  PubMed  Google Scholar 

  • Lund, E.G., Xie, C., Kotti, T., Turley, S.D., Dietschy, J.M., and Russell, D. W. (2003). Knockout of the cholesterol 24-hydroxylase gene in mice reveals a brain-specific mechanism of cholesterol turnover. J Biol Chem 278, 22980–22988.

    Article  CAS  PubMed  Google Scholar 

  • Ma, C., Han, M., Heinrich, B., Fu, Q., Zhang, Q., Sandhu, M., Agdashian, D., Terabe, M., Berzofsky, J.A., Fako, V., et al. (2018). Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360.

  • Ma, S.L., Tang, N.L.S., Lam, L.C.W., and Chiu, H.F.K. (2006). Polymorphisms of the cholesterol 24-hydroxylase (CYP46A1) gene and the risk of Alzheimer’s disease in a Chinese population. Int Psychogeriatr 18, 37–45.

    Article  PubMed  Google Scholar 

  • MahmoudianDehkordi, S., Arnold, M., Nho, K., Ahmad, S., Jia, W., Xie, G., Louie, G., Kueider-Paisley, A., Moseley, M.A., Thompson, J.W., et al. (2019). Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease—an emerging role for gut microbiome. Alzheimers Dement 15, 76–92.

    Article  PubMed  Google Scholar 

  • Mano, N., Goto, T., Uchida, M., Nishimura, K., Ando, M., Kobayashi, N., and Goto, J. (2004). Presence of protein-bound unconjugated bile acids in the cytoplasmic fraction of rat brain. J Lipid Res 45, 295–300.

    Article  CAS  Google Scholar 

  • McMillin, M., Frampton, G., Tobin, R., Dusio, G., Smith, J., Shin, H., Newell-Rogers, K., Grant, S., and DeMorrow, S. (2015). TGR5 signaling reduces neuroinflammation during hepatic encephalopathy. J Neurochem 135, 565–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNeilly, A.D., Macfarlane, D.P., O’Flaherty, E., Livingstone, D.E., Mitić, T., McConnell, K.M., McKenzie, S.M., Davies, E., Reynolds, R.M., Thiesson, H.C., et al. (2010). Bile acids modulate glucocorticoid metabolism and the hypothalamic-pituitary-adrenal axis in obstructive jaundice. J Hepatol 52, 705–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mencarelli, A., Cipriani, S., Renga, B., Francisci, D., Palladino, G., Distrutti, E., Baldelli, F., and Fiorucci, S. (2010). The bile acid sensor FXR protects against dyslipidemia and aortic plaques development induced by the HIV protease inhibitor ritonavir in mice. PLoS ONE 5, e13238.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyazaki-Anzai, S., Masuda, M., Levi, M., Keenan, A.L., and Miyazaki, M. (2014). Dual activation of the bile acid nuclear receptor FXR and G-protein-coupled receptor TGR5 protects mice against atherosclerosis. PLoS ONE 9, e108270.

    Article  PubMed  PubMed Central  Google Scholar 

  • Monteiro-Cardoso, V.F., Corlianò, M., and Singaraja, R.R. (2021). Bile acids: a communication channel in the gut-brain axis. Neuromol Med 23, 99–117.

    Article  CAS  Google Scholar 

  • Moreno, M.P.C., Oth, M., Deferme, S., Lammert, F., Tack, J., Dressman, J., and Augustijns, P. (2006). Characterization of fasted-state human intestinal fluids collected from duodenum and jejunum. J Pharm Pharmacol 58, 1079–1089.

    Article  Google Scholar 

  • Morton, G.J., Matsen, M.E., Bracy, D.P., Meek, T.H., Nguyen, H.T., Stefanovski, D., Bergman, R.N., Wasserman, D.H., and Schwartz, M.W. (2013). FGF19 action in the brain induces insulin-independent glucose lowering. J Clin Invest 123, 4799–4808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nho, K., Kueider-Paisley, A., MahmoudianDehkordi, S., Arnold, M., Risacher, S.L., Louie, G., Blach, C., Baillie, R., Han, X., Kastenmüller, G., et al. (2019). Altered bile acid profile in mild cognitive impairment and Alzheimer’s disease: relationship to neuroimaging and CSF biomarkers. Alzheimers Dement 15, 232–244.

    Article  Google Scholar 

  • Northfield, T.C., and McColl, I. (1973). Postprandial concentrations of free and conjugated bile acids down the length of the normal human small intestine. Gut 14, 513–518.

    Article  CAS  PubMed Central  Google Scholar 

  • Paik, D., Yao, L., Zhang, Y., Bae, S., D’Agostino, G.D., Zhang, M., Kim, E., Franzosa, E.A., Avila-Pacheco, J., Bisanz, J.E., et al. (2022). Human gut bacteria produce TH17-modulating bile acid metabolites. Nature 603, 907–912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, X., Elliott, C.T., McGuinness, B., Passmore, P., Kehoe, P.G., Hölscher, C., McClean, P.L., Graham, S.F., and Green, B.D. (2017). Metabolomic profiling of bile acids in clinical and experimental samples of Alzheimer’s disease. Metabolites 7, 28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan, Z., Hu, Y., Huang, Z., Han, N., Li, Y., Zhuang, X., Yin, J., Peng, H., Gao, Q., Zhang, W., et al. (2022). Alterations in gut microbiota and metabolites associated with altitude-induced cardiac hypertrophy in rats during hypobaric hypoxia challenge. Sci China Life Sci 65, 2093–2113.

    Article  CAS  PubMed  Google Scholar 

  • Pandak, W.M., and Kakiyama, G. (2019). The acidic pathway of bile acid synthesis: not just an alternative pathway. Liver Res 3, 88–98.

    Article  PubMed  PubMed Central  Google Scholar 

  • Papassotiropoulos, A., Streffer, J.R., Tsolaki, M., Schmid, S., Thal, D., Nicosia, F., Iakovidou, V., Maddalena, A., Lütjohann, D., Ghebremedhin, E., et al. (2003). Increased brain β-amyloid load, phosphorylated Tau, and risk of Alzheimer disease associated with an intronic CYP46 polymorphism. Arch Neurol 60, 29–35.

    Article  Google Scholar 

  • Park, M.J., Kong, H.J., Kim, H.Y., Kim, H.H., Kim, J.H., and Cheong, J.H. (2007). Transcriptional repression of the gluconeogenic gene PEPCK by the orphan nuclear receptor SHP through inhibitory interaction with C/EBPα. Biochem J 402, 567–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulusma, C.C., Groen, A., Kunne, C., Ho-Mok, K.S., Spijkerboer, A.L., Rudi de Waart, D., Hoek, F.J., Vreeling, H., Hoeben, K.A., van Marle, J., et al. (2006). Atp8b1 deficiency in mice reduces resistance of the canalicular membrane to hydrophobic bile salts and impairs bile salt transport. Hepatology 44, 195–204.

    Article  CAS  PubMed  Google Scholar 

  • Picard, A., Metref, S., Tarussio, D., Dolci, W., Berney, X., Croizier, S., Labouebe, G., and Thorens, B. (2021). Fgf15 neurons of the dorsomedial hypothalamus control glucagon secretion and hepatic gluconeogenesis. Diabetes 70, 1443–1457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn, M., Ueno, Y., Pae, H.Y., Huang, L., Frampton, G., Galindo, C., Francis, H., Horvat, D., McMillin, M., and DeMorrow, S. (2012). Suppression of the HPA axis during extrahepatic biliary obstruction induces cholangiocyte proliferation in the rat. Am J Physiol Gastrointest Liver Physiol 302, G182–G193.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, I.A., Smith, N.K., Erreger, K., Ghose, D., Saunders, C., Foster, D.J., Turner, B., Poe, A., Albaugh, V.L., McGuinness, O., et al. (2018). Bile diversion, a bariatric surgery, and bile acid signaling reduce central cocaine reward. PLoS Biol 16, e2006682.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roma, M.G., Toledo, F.D., Boaglio, A.C., Basiglio, C.L., Crocenzi, F.A., and Sánchez Pozzi, E.J. (2011). Ursodeoxycholic acid in cholestasis: linking action mechanisms to therapeutic applications. Clin Sci 121, 523–544.

    Article  CAS  Google Scholar 

  • Rudra, D., deRoos, P., Chaudhry, A., Niec, R.E., Arvey, A., Samstein, R. M., Leslie, C., Shaffer, S.A., Goodlett, D.R., and Rudensky, A.Y. (2012). Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nat Immunol 13, 1010–1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell, D.W. (2003). The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 72, 137–174.

    Article  CAS  PubMed  Google Scholar 

  • Russell, D.W., Halford, R.W., Ramirez, D.M.O., Shah, R., and Kotti, T. (2009). Cholesterol 24-hydroxylase: an enzyme of cholesterol turnover in the brain. Annu Rev Biochem 78, 1017–1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruttimann, E.B., Arnold, M., Hillebrand, J.J., Geary, N., and Langhans, W. (2009). Intrameal hepatic portal and intraperitoneal infusions of glucagon-like peptide-1 reduce spontaneous meal size in the rat via different mechanisms. Endocrinology 150, 1174–1181.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, K.K., Kohli, R., Gutierrez-Aguilar, R., Gaitonde, S.G., Woods, S.C., and Seeley, R.J. (2013). Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats. Endocrinology 154, 9–15.

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi, S., Miyara, M., Costantino, C.M., and Hafler, D.A. (2010). FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10, 490–500.

    Article  CAS  PubMed  Google Scholar 

  • Sampath, H., Flowers, M.T., Liu, X., Paton, C.M., Sullivan, R., Chu, K., Zhao, M., and Ntambi, J.M. (2009). Skin-specific deletion of stearoyl-CoA desaturase-1 alters skin lipid composition and protects mice from high fat diet-induced obesity. J Biol Chem 284, 19961–19973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sano, T., Huang, W., Hall, J.A., Yang, Y., Chen, A., Gavzy, S.J., Lee, J.Y., Ziel, J.W., Miraldi, E.R., Domingos, A.I., et al. (2016). An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell 164, 324.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki, T., Watanabe, Y., Kuboyama, A., Oikawa, A., Shimizu, M., Yamauchi, Y., and Sato, R. (2021). Muscle-specific TGR5 overexpression improves glucose clearance in glucose-intolerant mice. J Biol Chem 296, 100131.

    Article  CAS  Google Scholar 

  • Sato, Y., Atarashi, K., Plichta, D.R., Arai, Y., Sasajima, S., Kearney, S.M., Suda, W., Takeshita, K., Sasaki, T., Okamoto, S., et al. (2021). Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature 599, 458–464.

    Article  CAS  PubMed  Google Scholar 

  • Shi, Z., Wu, X., Yu, S., Huynh, M., Jena, P.K., Nguyen, M., Wan, Y.J.Y., and Hwang, S.T. (2020). Short-term exposure to a Western diet induces psoriasiform dermatitis by promoting accumulation of IL-17A-producing γδ T cells. J Investig Dermatol 140, 1815–1823.

    Article  CAS  PubMed  Google Scholar 

  • Shinohara, S., and Fujimori, K. (2020). Promotion of lipogenesis by PPARγ-activated FXR expression in adipocytes. Biochem Biophys Res Commun 527, 49–55.

    Article  CAS  Google Scholar 

  • Silverberg, D.S., Iaina, A., Reisin, E., Rotzak, R., and Eliahou, H.E. (1977). Cholestyramine in uraemic pruritus. BMJ 1, 752–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, X., Sun, X., Oh, S.F., Wu, M., Zhang, Y., Zheng, W., Geva-Zatorsky, N., Jupp, R., Mathis, D., Benoist, C., et al. (2020). Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 577, 410–415.

    Article  CAS  PubMed  Google Scholar 

  • Stayrook, K.R., Bramlett, K.S., Savkur, R.S., Ficorilli, J., Cook, T., Christe, M.E., Michael, L.F., and Burris, T.P. (2005). Regulation of carbohydrate metabolism by the farnesoid X receptor. Endocrinology 146, 984–991.

    Article  CAS  PubMed  Google Scholar 

  • Steiner, C., Holleboom, A.G., Karuna, R., Motazacker, M.M., Kuivenhoven, J.A., Frikke-Schmidt, R., Tybjaerg-Hansen, A., Rohrer, L., Rentsch, K.M., and von Eckardstein, A. (2012). Lipoprotein distribution and serum concentrations of 7α-hydroxy-4-cholesten-3-one and bile acids: effects of monogenic disturbances in high-density lipoprotein metabolism. Clin Sci 122, 385–400.

    Article  CAS  Google Scholar 

  • Steiner, C., Othman, A., Saely, C.H., Rein, P., Drexel, H., von Eckardstein, A., and Rentsch, K.M. (2011). Bile acid metabolites in serum: intraindividual variation and associations with coronary heart disease, metabolic syndrome and diabetes mellitus. PLoS ONE 6, e25006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, L., Xie, C., Wang, G., Wu, Y., Wu, Q., Wang, X., Liu, J., Deng, Y., Xia, J., Chen, B., et al. (2018). Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med 24, 1919–1929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swain, M.G., Patchev, V., Vergalla, J., Chrousos, G., and Jones, E.A. (1993). Suppression of hypothalamic-pituitary-adrenal axis responsiveness to stress in a rat model of acute cholestasis. J Clin Invest 91, 1903–1908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamasawa, N., Yoneda, M., Makino, I., Takebe, K., Sone, K., and Kogawa, R. (1993). The effect of biliary bile acid concentration and composition on the calcium level in human gallbladder bile. Tohoku J Exp Med 171, 297–307.

    Article  CAS  PubMed  Google Scholar 

  • Tsirouki, T., Dastiridou, A., Symeonidis, C., Tounakaki, O., Brazitikou, I., Kalogeropoulos, C., and Androudi, S. (2018). A focus on the epidemiology of uveitis. Ocul Immunol Inflamm 26, 2–16.

    Article  PubMed  Google Scholar 

  • Vassileva, G., Golovko, A., Markowitz, L., Abbondanzo, S.J., Zeng, M., Yang, S., Hoos, L., Tetzloff, G., Levitan, D., Murgolo, N.J., et al. (2006). Targeted deletion of Gpbar1 protects mice from cholesterol gallstone formation. Biochem J 398, 423–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vavassori, P., Mencarelli, A., Renga, B., Distrutti, E., and Fiorucci, S. (2009). The bile acid receptor FXR is a modulator of intestinal innate immunity. J Immunol 183, 6251–6261.

    Article  CAS  PubMed  Google Scholar 

  • Velazquez-Villegas, L.A., Perino, A., Lemos, V., Zietak, M., Nomura, M., Pols, T.W.H., and Schoonjans, K. (2018). TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue. Nat Commun 9, 245.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vitek, L. (2017). Bile acids in the treatment of cardiometabolic diseases. Ann Hepatol 16, S43–S52.

    Article  CAS  PubMed  Google Scholar 

  • Wang, D., Doestzada, M., Chen, L., Andreu-Sánchez, S., van den Munckhof, I.C.L., Augustijn, H.E., Koehorst, M., Ruiz-Moreno, A.J., Bloks, V.W., Riksen, N.P., et al. (2021a). Characterization of gut microbial structural variations as determinants of human bile acid metabolism. Cell Host Microbe 29, 1802–1814.e5.

    Article  CAS  Google Scholar 

  • Wang, H., Tan, Y.Z., Mu, R.H., Tang, S.S., Liu, X., Xing, S.Y., Long, Y., Yuan, D.H., and Hong, H. (2021b). Takeda G protein-coupled receptor 5 modulates depression-like behaviors via hippocampal CA3 pyramidal neurons afferent to dorsolateral septum. Biol Psychiatry 89, 1084–1095.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X.L., Suzuki, R., Lee, K., Tran, T., Gunton, J.E., Saha, A.K., Patti, M.E., Goldfine, A., Ruderman, N.B., Gonzalez, F.J., et al. (2009). Ablation of ARNT/HIF1β in liver alters gluconeogenesis, lipogenic gene expression, and serum ketones. Cell Metab 9, 428–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe, M., Houten, S.M., Mataki, C., Christoffolete, M.A., Kim, B.W., Sato, H., Messaddeq, N., Harney, J.W., Ezaki, O., Kodama, T., et al. (2006). Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484–489.

    Article  CAS  PubMed  Google Scholar 

  • Weiss, N., Barbier Saint Hilaire, P., Colsch, B., Isnard, F., Attala, S., Schaefer, A., Amador, M.M., Rudler, M., Lamari, F., Sedel, F., et al. (2016). Cerebrospinal fluid metabolomics highlights dysregulation of energy metabolism in overt hepatic encephalopathy. J Hepatol 65, 1120–1130.

    Article  CAS  PubMed  Google Scholar 

  • Wildenberg, M.E., and van den Brink, G.R. (2011). FXR activation inhibits inflammation and preserves the intestinal barrier in IBD. Gut 60, 432–433.

    Article  PubMed  Google Scholar 

  • Worthmann, A., John, C., Rühlemann, M.C., Baguhl, M., Heinsen, F.A., Schaltenberg, N., Heine, M., Schlein, C., Evangelakos, I., Mineo, C., et al. (2017). Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis. Nat Med 23, 839–849.

    Article  CAS  PubMed  Google Scholar 

  • Wu, X., Lv, Y.G., Du, Y.F., Chen, F., Reed, M.N., Hu, M., Suppiramaniam, V., Tang, S.S., and Hong, H. (2018). Neuroprotective effects of INT-777 against Aβ1-42-induced cognitive impairment, neuroinflammation, apoptosis, and synaptic dysfunction in mice. Brain Behav Immun 73, 533–545.

    Article  CAS  PubMed  Google Scholar 

  • Xie, C., Jiang, C., Shi, J., Gao, X., Sun, D., Sun, L., Wang, T., Takahashi, S., Anitha, M., Krausz, K.W., et al. (2017). An intestinal farnesoid X receptor-ceramide signaling axis modulates hepatic gluconeogenesis in mice. Diabetes 66, 613–626.

    Article  CAS  Google Scholar 

  • Xie, G., Wang, X., Jiang, R., Zhao, A., Yan, J., Zheng, X., Huang, F., Liu, X., Panee, J., Rajani, C., et al. (2018). Dysregulated bile acid signaling contributes to the neurological impairment in murine models of acute and chronic liver failure. Ebiomedicine 37, 294–306.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, E., Wang, B., Lu, S., Zhang, C., Zhu, L., Liu, X., Bai, M., and Li, Y. (2021). Tandem mass tag-based quantitative proteomic analysis of the liver reveals potential protein targets of Xiaochaihutang in CUMS model of depression. J Chromatogr B 1181, 122898.

    Article  CAS  Google Scholar 

  • Yamagata, K., Daitoku, H., Shimamoto, Y., Matsuzaki, H., Hirota, K., Ishida, J., and Fukamizu, A. (2004). Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclearfactor4 and Foxo1. J Biol Chem 279, 23158–23165.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, H., Kishi, T., Lee, C.E., Choi, B.J., Fang, H., Hollenberg, A.N., Drucker, D.J., and Elmquist, J.K. (2003). Glucagon-like peptide-1-responsive catecholamine neurons in the area postrema link peripheral glucagon-like peptide-1 with central autonomic control sites. J Neurosci 23, 2939–2946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimoto, S., Loo, T.M., Atarashi, K., Kanda, H., Sato, S., Oyadomari, S., Iwakura, Y., Oshima, K., Morita, H., Hattori, M., et al. (2013). Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499, 97–101.

    Article  CAS  PubMed  Google Scholar 

  • Younossi, Z.M., Ratziu, V., Loomba, R., Rinella, M., Anstee, Q.M., Goodman, Z., Bedossa, P., Geier, A., Beckebaum, S., Newsome, P.N., et al. (2019). Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 394, 2184–2196.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Lee, F.Y., Barrera, G., Lee, H., Vales, C., Gonzalez, F.J., Willson, T.M., and Edwards, P.A. (2006). Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci USA 103, 1006–1011.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Zheng, X., Huang, F., Zhao, A., Ge, K., Zhao, Q., and Jia, W. (2019). Ursodeoxycholic acid alters bile acid and fatty acid profiles in a mouse model of diet-induced obesity. Front Pharmacol 10, 842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y.K.J., Guo, G.L., and Klaassen, C.D. (2011). Diurnal variations of mouse plasma and hepatic bile acid concentrations as well as expression of biosynthetic enzymes and transporters. PLoS ONE 6, e16683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, J., Jung, Y.H., Jin, Y., Kang, S., Jang, C.G., and Lee, J. (2019). A comprehensive metabolomics investigation of hippocampus, serum, and feces affected by chronic fluoxetine treatment using the chronic unpredictable mild stress mouse model of depression. Sci Rep 9, 7566.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng, X., Chen, T., Jiang, R., Zhao, A., Wu, Q., Kuang, J., Sun, D., Ren, Z., Li, M., Zhao, M., et al. (2021). Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab 33, 791–803.e7.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J. (2018). T helper cell differentiation, heterogeneity, and plasticity. Cold Spring Harb Perspect Biol 10, a030338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82122012, 82270917) and Shanghai Research Center for Endocrine and Metabolic Diseases (2022ZZ01002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Jia or Xiaojiao Zheng.

Ethics declarations

The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, W., Li, Y., Cheung, K.C.P. et al. Bile acid signaling in the regulation of whole body metabolic and immunological homeostasis. Sci. China Life Sci. (2023). https://doi.org/10.1007/s11427-023-2353-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11427-023-2353-0

Navigation