Skip to main content
Log in

Mixed secondary chromatin structure revealed by modeling radiation-induced DNA fragment length distribution

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Spatial chromatin structure plays fundamental roles in many vital biological processes including DNA replication, transcription, damage and repair. However, the current understanding of the secondary structure of chromatin formed by local nucleosome-nucleosome interactions remains controversial, especially for the existence and conformation of 30 nm structure. Since chromatin structure influences the fragment length distribution (FLD) of ionizing radiation-induced DNA strand breaks, a 3D chromatin model fitting FLD patterns can help to distinguish different models of chromatin structure. Here, we developed a novel “30-C” model combining 30 nm chromatin structure models with Hi-C data, which measured the spatial contact frequency between different loci in the genome. We first reconstructed the 3D coordinates of the 25 kb bins from Hi-C heatmaps. Within the 25 kb bins, lower level chromatin structures supported by recent studies were filled. Simulated FLD patterns based on the 30-C model were compared to published FLD patterns induced by heavy ion radiation to validate the models. Importantly, the 30-C model predicted that the most probable chromatin fiber structure for human interphase fibroblasts in vivo was 45% zig-zag 30 nm fibers and 55% 10 nm fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas, A., He, X., Niu, J., Zhou, B., Zhu, G., Ma, T., Song, J., Gao, J., Zhang, M.Q., and Zeng, J. (2019). Integrating Hi-C and FISH data for modeling of the 3D organization of chromosomes. Nat Commun 10, 2049.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Albiez, H., Cremer, M., Tiberi, C., Vecchio, L., Schermelleh, L., Dittrich, S., Küpper, K., Joffe, B., Thormeyer, T., von Hase, J., et al. (2006). Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosome Res 14, 707–733.

    Article  CAS  PubMed  Google Scholar 

  • Botchway, S.W., Stevens, D.L., Hill, M.A., Jenner, T.J., and O’Neill, P. (1997). Induction and rejoining of DNA double-strand breaks in Chinese hamster V79-4 cells irradiated with characteristic aluminum K and copper L ultrasoft X rays. Radiat Res 148, 317–324.

    Article  CAS  PubMed  Google Scholar 

  • Boudaïffa, B., Cloutier, P., Hunting, D., Huels, M.A., and Sanche, L. (2000). Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 287, 1658–1660.

    Article  PubMed  Google Scholar 

  • Bryant, P.E. (1985). Enzymatic restriction of mammalian cell DNA: Evidence for double-strand breaks as potentially lethal lesions. Int J Radiat Biol Related Studies Phys Chem Med 48, 55–60.

    Article  CAS  Google Scholar 

  • Cremer, T., and Cremer, C. (2001). Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2, 292–301.

    Article  CAS  PubMed  Google Scholar 

  • de Lara, C.M., Hill, M.A., Jenner, T.J., Papworth, D., and O’Neill, P. (2001). Dependence of the yield of DNA double-strand breaks in Chinese hamster V79-4 cells on the photon energy of ultrasoft X rays. Radiat Res 155, 440–448.

    Article  CAS  PubMed  Google Scholar 

  • Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. (2002). Capturing chromosome conformation. Science 295, 1306–1311.

    Article  CAS  PubMed  Google Scholar 

  • Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S., and Ren, B. (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dostie, J., Richmond, T.A., Arnaout, R.A., Selzer, R.R., Lee, W.L., Honan, T.A., Rubio, E.D., Krumm, A., Lamb, J., Nusbaum, C., et al. (2006). Chromosome Conformation Capture Carbon Copy (5C): A massively parallel solution for mapping interactions between genomic elements. Genome Res 16, 1299–1309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du, Z., Zheng, H., Huang, B., Ma, R., Wu, J., Zhang, X., He, J., Xiang, Y., Wang, Q., Li, Y., et al. (2017). Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547, 232–235.

    Article  CAS  PubMed  Google Scholar 

  • Dutuit, O., Tabche-Fouhaile, A., Nenner, I., Frohlich, H., and Guyon, P.M. (1985). Photodissociation processes of water vapor below and above the ionization potential. J Chem Phys 83, 584–596.

    Article  CAS  Google Scholar 

  • Eltsov, M., Maclellan, K.M., Maeshima, K., Frangakis, A.S., and Dubochet, J. (2008). Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ. Proc Natl Acad Sci USA 105, 19732–19737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finch, J.T., and Klug, A. (1976). Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci USA 73, 1897–1901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frankenberg, D., Frankenberg-Schwager, M., Blöcher, D., Harbich, R., and Blocher, D. (1981). Evidence for DNA double-strand breaks as the critical lesions in yeast cells irradiated with sparsely or densely ionizing radiation under oxic or anoxic conditions. Radiat Res 88, 524–532.

    Article  CAS  PubMed  Google Scholar 

  • Friedland, W., Dingfelder, M., Kundrát, P., and Jacob, P. (2011). Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutat Res 711, 28–40.

    Article  CAS  PubMed  Google Scholar 

  • Friedland, W., Jacob, P., Paretzke, H.G., Merzagora, M., and Ottolenghi, A. (1999). Simulation of DNA fragment distributions after irradiation with photons. Radiat Environ Biophys 38, 39–47.

    Article  CAS  PubMed  Google Scholar 

  • Friedland, W., and Kundrát, P. (2013). Track structure based modelling of chromosome aberrations after photon and alpha-particle irradiation. Mutat Res 756, 213–223.

    Article  CAS  PubMed  Google Scholar 

  • Friedland, W., Paretzke, H.G., Ballarini, F., Ottolenghi, A., Kreth, G., and Cremer, C. (2008). First steps towards systems radiation biology studies concerned with DNA and chromosome structure within living cells. Radiat Environ Biophys 47, 49–61.

    Article  PubMed  Google Scholar 

  • Fussner, E., Ching, R.W., and Bazett-Jones, D.P. (2011). Living without 30 nm chromatin fibers. Trends Biochem Sci 36, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Ghirlando, R., and Felsenfeld, G. (2008). Hydrodynamic studies on defined heterochromatin fragments support a 30-nm fiber having six nucleosomes per turn. J Mol Biol 376, 1417–1425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grigoryev, S.A., Arya, G., Correll, S., Woodcock, C.L., and Schlick, T. (2009). Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions. Proc Natl Acad Sci USA 106, 13317–13322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall, E.J., and Giaccia, A.J. (2011). Radiobiology for the Radiologist, 7th ed. (Lippincott Williams & Wilkins).

  • Höglund, E., Blomquist, E., Carlsson, J., and Stenerlöw, B. (2000). DNA damage induced by radiation of different linear energy transfer: initial fragmentation. Int J Radiat Biol 76, 539–547.

    Article  PubMed  Google Scholar 

  • Höglund, E., and Stenerlöw, B. (2001). Induction and rejoining of DNA double-strand breaks in normal human skin fibroblasts after exposure to radiation of different linear energy transfer: Possible roles of track structure and chromatin organization. Radiat Res 155, 818–825.

    Article  PubMed  Google Scholar 

  • Hsieh, T.H.S., Weiner, A., Lajoie, B., Dekker, J., Friedman, N., and Rando, O.J. (2015). Mapping nucleosome resolution chromosome folding in yeast by Micro-C. Cell 162, 108–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imakaev, M., Fudenberg, G., McCord, R.P., Naumova, N., Goloborodko, A., Lajoie, B.R., Dekker, J., and Mirny, L.A. (2012). Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat Methods 9, 999–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Incerti, S., Baldacchino, G., Bernal, M., Capra, R., Champion, C., Francis, Z., Guèye, P., Mantero, A., Mascialino, B., Moretto, P., et al. (2010a). The Geant4-DNA project. Int J Model Simul Sci Comput 01, 157–178.

    Article  Google Scholar 

  • Incerti, S., Ivanchenko, A., Karamitros, M., Mantero, A., Moretto, P., Tran, H.N., Mascialino, B., Champion, C., Ivanchenko, V.N., Bernal, M.A., et al. (2010b). Comparison of GEANT4 very low energy cross section models with experimental data in water. Med Phys 37, 4692–4708.

    Article  CAS  PubMed  Google Scholar 

  • Li, G., Fullwood, M.J., Xu, H., Mulawadi, F.H., Velkov, S., Vega, V., Ariyaratne, P.N., Mohamed, Y.B., Ooi, H.S., Tennakoon, C., et al. (2010). ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol 11, R22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang, Y., Fu, Q., Wang, X., Liu, F., Yang, G., Luo, C., Ouyang, Q., and Wang, Y. (2017). Relative biological effectiveness for photons: implication of complex DNA double-strand breaks as critical lesions. Phys Med Biol 62, 2153–2175.

    Article  CAS  PubMed  Google Scholar 

  • Liang, Y., Yang, G., Liu, F., and Wang, Y. (2016). Monte Carlo simulation of ionizing radiation induced DNA strand breaks utilizing coarse grained high-order chromatin structures. Phys Med Biol 61, 445–460.

    Article  CAS  PubMed  Google Scholar 

  • Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., et al. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Löbrich, M., Cooper, P.K., and Rydberg, B. (1996). Non-random distribution of DNA double-strand breaks induced by particle irradiation. Int J Radiat Biol 70, 493–503.

    Article  PubMed  Google Scholar 

  • Luger, K., Dechassa, M.L., and Tremethick, D.J. (2012). New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 13, 436–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luger, K., Mäder, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T. J. (1997). Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260.

    Article  CAS  PubMed  Google Scholar 

  • Maeshima, K., Hihara, S., and Eltsov, M. (2010). Chromatin structure: does the 30-nm fibre exist in vivo? Curr Opin Cell Biol 22, 291–297.

    Article  CAS  PubMed  Google Scholar 

  • Martin, F., Burrow, P.D., Cai, Z., Cloutier, P., Hunting, D., and Sanche, L. (2004). DNA strand breaks induced by 0–4 eV electrons: the role of shape resonances. Phys Rev Lett 93, 068101.

    Article  PubMed  CAS  Google Scholar 

  • Newman, H.C., Prise, K.M., Folkard, M., and Michael, B.D. (1997). DNA double-strand break distributions in X-ray and alpha-particle irradiated V79 cells: Evidence for non-random breakage. Int J Radiat Biol 71, 347–363.

    Article  CAS  PubMed  Google Scholar 

  • Nikjoo, H., O’Neill, P., Terrissol, M., and Goodhead, D.T. (1999). Quantitative modelling of DNA damage using Monte Carlo track structure method. Radiat Environ Biophys 38, 31–38.

    Article  CAS  PubMed  Google Scholar 

  • Nygren, J., Ljungman, M., and Ahnström, G. (1995). Chromatin structure and radiation-induced DNA strand breaks in human cells: soluble scavengers and DNA-bound proteins offer a better protection against single- than double-strand breaks. Int J Radiat Biol 68, 11–18.

    Article  CAS  PubMed  Google Scholar 

  • Ohno, M., Ando, T., Priest, D.G., Kumar, V., Yoshida, Y., and Taniguchi, Y. (2019). Sub-nucleosomal genome structure reveals distinct nucleosome folding motifs. Cell 176, 520–534.e25.

    Article  CAS  PubMed  Google Scholar 

  • Ohno, M., Priest, D.G., and Taniguchi, Y. (2018). Nucleosome-level 3D organization of the genome. Biochem Soc Trans 46, 491–501.

    Article  CAS  PubMed  Google Scholar 

  • Oleinick, N.L., Chiu, S.M., Ramakrishnan, N., and Xue, L.Y. (1987). The formation, identification, and significance of DNA-protein cross-links in mammalian cells. Br J Cancer Suppl 8, 135–140.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oluwadare, O., Highsmith, M., and Cheng, J. (2019). An overview of methods for reconstructing 3-D chromosome and genome structures from Hi-C data. Biol Proced Online 21, 7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ou, H.D., Phan, S., Deerinck, T.J., Thor, A., Ellisman, M.H., and O’Shea, C.C. (2017). ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science 357, eaag0025.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pal, K., Forcato, M., and Ferrari, F. (2019). Hi-C analysis: from data generation to integration. Biophys Rev 11, 67–78.

    Article  PubMed  Google Scholar 

  • Prise, K.M., Folkard, M., Davies, S., and Michael, B.D. (1989). Measurement of DNA damage and cell killing in Chinese hamster V79 cells irradiated with aluminum characteristic ultrasoft X rays. Radiat Res 117, 489–499.

    Article  CAS  PubMed  Google Scholar 

  • Rao, S.S.P., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Robinson, J.T., Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S., et al. (2014). A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricci, M.A., Manzo, C., García-Parajo, M.F., Lakadamyali, M., and Cosma, M.P. (2015). Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160, 1145–1158.

    Article  CAS  PubMed  Google Scholar 

  • Risca, V.I., Denny, S.K., Straight, A.F., and Greenleaf, W.J. (2017). Variable chromatin structure revealed by in situ spatially correlated DNA cleavage mapping. Nature 541, 237–241.

    Article  CAS  PubMed  Google Scholar 

  • Roots, R., and Okada, S. (1975). Estimation of life times and diffusion distances of radicals involved in X-ray-induced DNA strand breaks or killing of mammalian cells. Radiat Res 64, 306–320.

    Article  CAS  PubMed  Google Scholar 

  • Rydberg, B. (1996). Clusters of DNA damage induced by ionizing radiation: Formation of short DNA fragments. II. Experimental detection. Radiat Res 145, 200–209.

    CAS  PubMed  Google Scholar 

  • Rydberg, B., Holley, W.R., Mian, I.S., and Chatterjee, A. (1998). Chromatin conformation in living cells: support for a zig-zag model of the 30 nm chromatin fiber. J Mol Biol 284, 71–84.

    Article  CAS  PubMed  Google Scholar 

  • Simonis, M., Klous, P., Splinter, E., Moshkin, Y., Willemsen, R., de Wit, E., van Steensel, B., and de Laat, W. (2006). Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38, 1348–1354.

    Article  CAS  PubMed  Google Scholar 

  • Song, F., Chen, P., Sun, D., Wang, M., Dong, L., Liang, D., Xu, R.M., Zhu, P., and Li, G. (2014). Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science 344, 376–380.

    Article  CAS  PubMed  Google Scholar 

  • Stevens, T.J., Lando, D., Basu, S., Atkinson, L.P., Cao, Y., Lee, S.F., Leeb, M., Wohlfahrt, K.J., Boucher, W., O’Shaughnessy-Kirwan, A., et al. (2017). 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544, 59–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, S., Su, J.H., Beliveau, B.J., Bintu, B., Moffitt, J.R., Wu, C., and Zhuang, X. (2016). Spatial organization of chromatin domains and compartments in single chromosomes. Science 353, 598–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, P., Li, T., Li, R., Jia, L., Zhu, P., Liu, Y., Chen, Q., Tang, D., Yu, Y., and Li, C. (2017). 3D genome of multiple myeloma reveals spatial genome disorganization associated with copy number variations. Nat Commun 8, 1937.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (11875079 and 11434001). C.L. was supported by NSFC (31871266), the National Key Research and Development Project of China (2016YFA0100103), and NSFC Key Research Grant 71532001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Li or Gen Yang.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Gu, C., Ma, L. et al. Mixed secondary chromatin structure revealed by modeling radiation-induced DNA fragment length distribution. Sci. China Life Sci. 63, 825–834 (2020). https://doi.org/10.1007/s11427-019-1638-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-1638-6

Keywords

Navigation