Skip to main content
Log in

A new and promising application of gene editing: CRISPR-controlled smart materials for tissue engineering, bioelectronics, and diagnostics

  • Insight
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Bi, H., and Yang, B. (2017). Gene editing with TALEN and CRISPR/Cas in rice. Prog Mol Biol Transl Sci 149, 81–98.

    Article  Google Scholar 

  • Boettcher, M., and McManus, M.T. (2015). Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell 58, 575–585.

    Article  CAS  Google Scholar 

  • Carroll, D. (2011). Genome engineering with zinc-finger nucleases. Genetics 188, 773–782.

    Article  CAS  Google Scholar 

  • Chen, J.S., Ma, E., Harrington, L.B., Da Costa, M., Tian, X., Palefsky, J.M., and Doudna, J.A. (2018). CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436–439.

    Article  CAS  Google Scholar 

  • Doudna, J.A., and Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096.

    Article  Google Scholar 

  • English, M.A., Soenksen, L.R., Gayet, R.V., de Puig, H., Angenent-Mari, N.M., Mao, A.S., Nguyen, P.Q., and Collins, J.J. (2019). Programmable CRISPR-responsive smart materials. Science 365, 780–785.

    Article  CAS  Google Scholar 

  • Gootenberg, J.S., Abudayyeh, O.O., Kellner, M.J., Joung, J., Collins, J.J., and Zhang, F. (2018). Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360, 439–444.

    Article  CAS  Google Scholar 

  • Gootenberg, J.S., Abudayyeh, O.O., Lee, J.W., Essletzbichler, P., Dy, A.J., Joung, J., Verdine, V., Donghia, N., Daringer, N.M., Freije, C.A., et al. (2017). Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356, 438–442.

    Article  CAS  Google Scholar 

  • He, Z.Y., Men, K., Qin, Z., Yang, Y., Xu, T., and Wei, Y.Q. (2017). Non-viral and viral delivery systems for CRISPR-Cas9 technology in the biomedical field. Sci China Life Sci 60, 458–467.

    Article  CAS  Google Scholar 

  • Hsu, P.D., Lander, E.S., and Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278.

    Article  CAS  Google Scholar 

  • Knight, S.C., Tjian, R., and Doudna, J.A. (2018). Genomes in focus: development and applications of CRISPR-Cas9 imaging technologies. Angew Chem Int Ed 57, 4329–4337.

    Article  CAS  Google Scholar 

  • Knott, G.J., and Doudna, J.A. (2018). CRISPR-Cas guides the future of genetic engineering. Science 361, 866–869.

    Article  CAS  Google Scholar 

  • Li, S.Y., Cheng, Q.X., Liu, J.K., Nie, X.Q., Zhao, G.P., and Wang, J. (2018). CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Res 28, 491–493.

    Article  CAS  Google Scholar 

  • Pardee, K., Green, A.A., Takahashi, M.K., Braff, D., Lambert, G., Lee, J. W., Ferrante, T., Ma, D., Donghia, N., Fan, M., et al. (2016). Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165, 1255–1266.

    Article  CAS  Google Scholar 

  • Ren, X., Holsteens, K., Li, H., Sun, J., Zhang, Y., Liu, L.P., Liu, Q., and Ni, J.Q. (2017). Genome editing in Drosophila melanogaster: from basic genome engineering to the multipurpose CRISPR-Cas9 system. Sci China Life Sci 60, 476–489.

    Article  CAS  Google Scholar 

  • Shen, L., Hua, Y., Fu, Y., Li, J., Liu, Q., Jiao, X., Xin, G., Wang, J., Wang, X., Yan, C., et al. (2017). Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Sci China Life Sci 60, 506–515.

    Article  CAS  Google Scholar 

  • Singh, V., Braddick, D., and Dhar, P.K. (2017). Exploring the potential of genome editing CRISPR-Cas9 technology. Gene 599, 1–18.

    Article  CAS  Google Scholar 

  • Terns, R.M., and Terns, M.P. (2014). CRISPR-based technologies: prokaryotic defense weapons repurposed. Trends Genet 30, 111–118.

    Article  CAS  Google Scholar 

  • Wang, Y., Meng, Z., Liang, C., Meng, Z., Wang, Y., Sun, G., Zhu, T., Cai, Y., Guo, S., Zhang, R., et al. (2017). Increased lateral root formation by CRISPR/Cas9-mediated editing of arginase genes in cotton. Sci China Life Sci 60, 524–527.

    Article  CAS  Google Scholar 

  • Zhang, X., Wang, L., Liu, M., and Li, D. (2017). CRISPR/Cas9 system: a powerful technology for in vivo and ex vivo gene therapy. Sci China Life Sci 60, 468–475.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiawei Wei.

Additional information

Compliance and ethics The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, W., Huang, M., Wei, Y. et al. A new and promising application of gene editing: CRISPR-controlled smart materials for tissue engineering, bioelectronics, and diagnostics. Sci. China Life Sci. 62, 1547–1549 (2019). https://doi.org/10.1007/s11427-019-1576-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-1576-0

Navigation