Skip to main content
Log in

GPR54 deficiency reduces the Treg population and aggravates experimental autoimmune encephalomyelitis in mice

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

GPR54 is highly expressed in the central nervous system and plays a crucial role in pubertal development. However, GRP54 is also expressed in the immune system, implying possible immunoregulatory functions. Here we investigated the role of GPR54 in T cell and immune tolerance. GPR54 deficiency led to an enlarged thymus, an increased number of thymocytes, and altered thymic micro-architecture starting around puberty, indicating GPR54 function in T-cell development through its regulatory effect on the gonadal system. However, flow cytometry revealed a significant reduction in the peripheral regulatory T cell population and a moderate decrease in CD4 single-positive thymocytes in prepubertal Gpr54−/− mice. These phenotypes were confirmed in chimeric mice with GPR54 deficient bone marrow-derived cells. In addition, we found elevated T cell activation in peripheral and thymic T cells in Gpr54−/− mice. When intact mice were immunized with myelin oligodendrocyte glycoprotein, a more severe experimental autoimmune encephalomyelitis (EAE) developed in the Gpr54−/− mice. Interestingly, aggravated EAE disease was also manifested in castrated and bone marrow chimeric Gpr54−/− mice compared to the respective wild-type control, suggesting a defect in self-tolerance resulting from GPR54 deletion through a mechanism that bypassed sex hormones. These findings demonstrate a novel role for GPR54 in regulating self-tolerant immunity in a sex hormone independent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adori, M., Kiss, E., Barad, Z., Barabás, K., Kiszely, E., Schneider, A., Kövesdi, D., Sziksz, E., Abrahám, I.M., and Matkó, J., et al. (2010). Estrogen augments the T cell-dependent but not the T-independent immune response. Cell Mol Life Sci 67, 1661–1674.

    Article  PubMed  CAS  Google Scholar 

  • Blink, S., and Miller, S. (2009). The contribution of gammadelta T cells to the pathogenesis of EAE and MS. Curr Mol Med 9, 15–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bosselut, R. (2004). CD4/CD8-lineage differentiation in the thymus: from nuclear effectors to membrane signals. Nat Rev Immunol 4, 529–540.

    Article  PubMed  CAS  Google Scholar 

  • Chen, W.J., and Konkel, J.E. (2015). Development of thymic Foxp3+ regulatory T cells: TGF-ß matters. Eur J Immunol 45, 958–965.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cho, S.G., Li, D., Stafford, L.J., Luo, J., Rodriguez-Villanueva, M., Wang, Y., and Liu, M. (2009). KiSS1 suppresses TNFa-induced breast cancer cell invasion via an inhibition of RhoA-mediated NF-kB activation. J Cell Biochem 107, 1139–1149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cho, S.G., Li, D., Tan, K., Siwko, S.K., and Liu, M. (2012). KiSS1 and its G-protein-coupled receptor GPR54 in cancer development and metastasis. Cancer Metastasis Rev 31, 585–591.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, S.A., and Dhillo, W.S. (2016). Kisspeptin across the human lifespan: evidence from animal studies and beyond. J Endocrinol 229, R83–R98.

    Article  PubMed  CAS  Google Scholar 

  • Colledge, W.H. (2009). Transgenic mouse models to study Gpr54/kisspeptin physiology. Peptides 30, 34–41.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, T.S., DiPaolo, R.J., Andersson, J., and Shevach, E.M. (2007). Cutting edge: IL-2 is essential for TGF-beta-mediated induction of Foxp3+ T regulatory cells. J Immunol 178, 4022–4026.

    Article  PubMed  CAS  Google Scholar 

  • de Roux, N., Genin, E., Carel, J.C., Matsuda, F., Chaussain, J.L., and Milgrom, E. (2003). Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci USA 100, 10972–10976.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Funes, S., Hedrick, J.A., Vassileva, G., Markowitz, L., Abbondanzo, S., Golovko, A., Yang, S., Monsma, F.J., and Gustafson, E.L. (2003). The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochem Biophys Res Commun 312, 1357–1363.

    Article  PubMed  CAS  Google Scholar 

  • Gallegos, A.M., and Bevan, M.J. (2006). Central tolerance: good but imperfect. Immunol Rev 209, 290–296.

    Article  PubMed  Google Scholar 

  • Gorbunova, O.L., and Shirshev, S.V. (2014). The role of kisspeptin in immune tolerance formation during pregnancy. Dokl Biol Sci 457, 258–260.

    Article  PubMed  CAS  Google Scholar 

  • Herbison, A.E., d’Anglemont de Tassigny, X., Doran, J., and Colledge, W. H. (2010). Distribution and postnatal development of Gpr54 gene expression in mouse brain and gonadotropin-releasing hormone neurons. Endocrinology 151, 312–321.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz, D.A., Zheng, S.G., Wang, J., and Gray, J.D. (2008). Critical role of IL-2 and TGF-ß in generation, function and stabilization of Foxp3+ CD4+ Treg. Eur J Immunol 38, 912–915.

    Article  PubMed  CAS  Google Scholar 

  • Hu, Y. (2012). Isolation of human and mouse neutrophils ex vivo and in vitro. Methods Mol Biol 844, 101–113.

    Article  PubMed  CAS  Google Scholar 

  • Jochems, C., Islander, U., Kallkopf, A., Lagerquist, M., Ohlsson, C., and Carlsten, H. (2007). Role of raloxifene as a potent inhibitor of experimental postmenopausal polyarthritis and osteoporosis. Arthritis Rheum 56, 3261–3270.

    Article  PubMed  CAS  Google Scholar 

  • Karlsson, S.A., Haziri, K., Hansson, E., Kettunen, P., and Westberg, L. (2015). Effects of sex and gonadectomy on social investigation and social recognition in mice. BMC Neurosci 16, 83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kotani, M., Detheux, M., Vandenbogaerde, A., Communi, D., Vanderwinden, J.M., Le Poul, E., Brézillon, S., Tyldesley, R., Suarez-Huerta, N., and Vandeput, F., et al. (2001). The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276, 34631–34636.

    Article  PubMed  CAS  Google Scholar 

  • Laurent, J., Bosco, N., Marche, P.N., and Ceredig, R. (2004). New insights into the proliferation and differentiation of early mouse thymocytes. Int Immunol 16, 1069–1080.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.H., Miele, M.E., Hicks, D.J., Phillips, K.K., Trent, J.M., Weissman, B.E., and Welch, D.R. (1996). KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst 88, 1731–1737.

    Article  PubMed  CAS  Google Scholar 

  • Lee, D.K., Nguyen, T., O’Neill, G.P., Cheng, R., Liu, Y., Howard, A.D., Coulombe, N., Tan, C.P., Tang-Nguyen, A.T., and George, S.R., et al. (1999). Discovery of a receptor related to the galanin receptors. FEBS Lett 446, 103–107.

    Article  PubMed  CAS  Google Scholar 

  • Li, D., Yu, W., and Liu, M. (2009). Regulation of KiSS1 gene expression. Peptides 30, 130–138.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Yin, Z., Zhang, R., Yan, K., Chen, L., Chen, F., Huang, W., Lv, B., Sun, C., and Jiang, X. (2014). MSCs inhibit bone marrow-derived DC maturation and function through the release of TSG-6. Biochem Biophys Res Commun 450, 1409–1415.

    Article  PubMed  CAS  Google Scholar 

  • Makri, A., Pissimissis, N., Lembessis, P., Polychronakos, C., and Koutsilieris, M. (2008). The kisspeptin (KiSS-1)/GPR54 system in cancer biology. Cancer Treatment Rev 34, 682–692.

    Article  CAS  Google Scholar 

  • Malik, S., Want, M.Y., and Awasthi, A. (2016). The emerging roles of gamma-delta T cells in tissue inflammation in experimental autoimmune encephalomyelitis. Front Immunol 7, 14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maloy, K.J., and Powrie, F. (2001). Regulatory T cells in the control of immune pathology. Nat Immunol 2, 816–822.

    Article  PubMed  CAS  Google Scholar 

  • Meczekalski, B., Podfigurna-Stopa, A., and Genazzani, A.R. (2011). Why kisspeptin is such important for reproduction? Gynecol Endocrinol 27, 8–13.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, D.C., Stafford, L.J., Li, D., Bar-Eli, M., and Liu, M. (2007). Transcriptional regulation of KiSS-1 gene expression in metastatic melanoma by specificity protein-1 and its coactivator DRIP-130. Oncogene 26, 1739–1747.

    Article  PubMed  CAS  Google Scholar 

  • Moore, K.W., de Waal Malefyt, R., Coffman, R.L., and O’Garra, A. (2001). Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19, 683–765.

    Article  PubMed  CAS  Google Scholar 

  • Muir, A.I., Chamberlain, L., Elshourbagy, N.A., Michalovich, D., Moore, D.J., Calamari, A., Szekeres, P.G., Sarau, H.M., Chambers, J.K., and Murdock, P., et al. (2001). AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem 276, 28969–28975.

    Article  PubMed  CAS  Google Scholar 

  • Ohtaki, T., Shintani, Y., Honda, S., Matsumoto, H., Hori, A., Kanehashi, K., Terao, Y., Kumano, S., Takatsu, Y., and Masuda, Y., et al. (2001). Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein- coupled receptor. Nature 411, 613–617.

    Article  PubMed  CAS  Google Scholar 

  • Paul, S., Singh, A.K., Shilpi, A.K., and Lal, G. (2014). Phenotypic and functional plasticity of gamma-delta (γδ) T cells in inflammation and tolerance. Int Rev Immunol 33, 537–558.

    Article  PubMed  CAS  Google Scholar 

  • Popa, S.M., Clifton, D.K., and Steiner, R.A. (2008). The role of kisspeptins and GPR54 in the neuroendocrine regulation of reproduction. Annu Rev Physiol 70, 213–238.

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi, S. (2005). Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6, 345–352.

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi, S., Ono, M., Setoguchi, R., Yagi, H., Hori, S., Fehervari, Z., Shimizu, J., Takahashi, T., and Nomura, T. (2006). Foxp3+CD25+CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 212, 8–27.

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi, S., Yamaguchi, T., Nomura, T., and Ono, M. (2008). Regulatory T cells and immune tolerance. Cell 133, 775–787.

    Article  PubMed  CAS  Google Scholar 

  • Seminara, S.B., Messager, S., Chatzidaki, E.E., Thresher, R.R., Acierno Jr., J.S., Shagoury, J.K., Bo-Abbas, Y., Kuohung, W., Schwinof, K.M., and Hendrick, A.G., et al. (2003). The GPR54 gene as a regulator of puberty. N Engl J Med 349, 1614–1627.

    Article  PubMed  CAS  Google Scholar 

  • Spence, R.D., Hamby, M.E., Umeda, E., Itoh, N., Du, S., Wisdom, A.J., Cao, Y., Bondar, G., Lam, J., and Ao, Y., et al. (2011). Neuroprotection mediated through estrogen receptor-alpha in astrocytes. Proc Natl Acad Sci USA 108, 8867–8872.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spence, R.D., and Voskuhl, R.R. (2012). Neuroprotective effects of estrogens and androgens in CNS inflammation and neurodegeneration. Front Neuroendocrinol 33, 105–115.

    Article  PubMed  CAS  Google Scholar 

  • Stafford, L.J., Xia, C., Ma, W., Cai, Y., and Liu, M. (2002). Identification and characterization of mouse metastasis-suppressor KiSS1 and its Gprotein- coupled receptor. Cancer Res 62, 5399–404.

    PubMed  CAS  Google Scholar 

  • Tanriverdi, F., Silveira, L.F., MacColl, G.S., and Bouloux, P.M. (2003). The hypothalamic-pituitary-gonadal axis: immune function and autoimmunity. J Endocrinol 176, 293–304.

    Article  PubMed  CAS  Google Scholar 

  • Teles, M.G., Bianco, S.D.C., Brito, V.N., Trarbach, E.B., Kuohung, W., Xu, S., Seminara, S.B., Mendonca, B.B., Kaiser, U.B., and Latronico, A.C. (2008). A GPR54-activating mutation in a patient with central precocious puberty. N Engl J Med 358, 709–715.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tena-Sempere, M. (2010). Roles of kisspeptins in the control of hypothalamic- gonadotropic function: focus on sexual differentiation and puberty onset. Endocr Dev 17, 52–62.

    Article  PubMed  CAS  Google Scholar 

  • Tolson, K.P., Garcia, C., Yen, S., Simonds, S., Stefanidis, A., Lawrence, A., Smith, J.T., and Kauffman, A.S. (2014). Impaired kisspeptin signaling decreases metabolism and promotes glucose intolerance and obesity. J Clin Invest 124, 3075–3079.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Ewijk, W. (1991). T-cell differentiation is influenced by thymic microenvironments. Annu Rev Immunol 9, 591–615.

    Article  PubMed  Google Scholar 

  • Vignali, D.A.A., Collison, L.W., and Workman, C.J. (2008). How regulatory T cells work. Nat Rev Immunol 8, 523–532.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watanabe, N., Wang, Y.H., Lee, H.K., Ito, T., Wang, Y.H., Cao, W., and Liu, Y.J. (2005). Hassall’s corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature 436, 1181–1185.

    Article  PubMed  CAS  Google Scholar 

  • Zakharova, L.A., Ermilova, I.Y., Melnikova, V.I., Malyukova, I.V., and Adamskaya, E.I. (2005). Hypothalamic control of mitogen-induced proliferative responses and luteinizing hormone-releasing hormone levels in thymus and peripheral blood of rat fetuses. Neuroimmunomodulation 12, 85–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Eric L. Gustafson at Schering-Plough Research Institute for providing the male and female Gpr54+/− mouse line. This work was supported by the National Natural Science Foundation of China (31271468) and the Science and Technology Commission of Shanghai Municipality (12ZR1408700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingyao Liu or Huaqing Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, R., Liu, F., Yang, Y. et al. GPR54 deficiency reduces the Treg population and aggravates experimental autoimmune encephalomyelitis in mice. Sci. China Life Sci. 61, 675–687 (2018). https://doi.org/10.1007/s11427-017-9269-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9269-8

Keywords

Navigation