Skip to main content
Log in

A novel function for the cellulose binding module of cellobiohydrolase I

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

A homogeneous cellulose-binding module (CBM) of cellobiohydrolase I (CBHI) from Trichoderma pseudokoningii S-38 was obtained by the limited proteolysis with papain and a series of chromatographs filtration. Analysis of FT-IR spectra demonstrated that the structural changes result from a weakening and splitting of the hydrogen bond network in cellulose by the action of CBMCBHI at 40°C for 24 h. The results of molecular dynamic simulations are consistent with the experimental conclusions, and provide a nanoscopic view of the mechanism that strong and medium H-bonds decreased dramatically when CBM was bound to the cellulose surface. The function of CBMCBHI is not only limited to locating intact CBHI in close proximity with cellulose fibrils, but also is involved in the structural disruption at the fibre surface. The present studies provided considerable evidence for the model of the intramolecular synergy between the catalytic domain and their CBMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang Y H, Lynd L R. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnol Bioeng, 2004, 88(7): 797–824, 15538721, 10.1002/bit.20282, 1:CAS:528:DC%2BD2cXhtVOitrjE

    Article  CAS  Google Scholar 

  2. Klyosov A A. Trends in biochemistry and enzymology of cellulose degradation. Biochemistry, 1990, 29: 10577–10585, 2271668, 10.1021/bi00499a001, 1:CAS:528:DyaK3cXmt1Kktrg%3D

    Article  CAS  Google Scholar 

  3. Shoseyov O, Shani Z, Levy I. Carbohydrate binding modules: Biochemical properties and novel applications. Microbiol Mol Biol Rev, 2006, 70(2): 283–295, 16760304, 10.1128/MMBR.00028-05, 1:CAS:528:DC%2BD28XmvFGrtLk%3D

    Article  CAS  Google Scholar 

  4. Bourne Y, Henrissat B. Glycoside hydrolases and glycosyltransferases: Families and functional modules. Curr Opin Struct Biol, 2001, 11(5): 593–600, 11785761, 10.1016/S0959-440X(00)00253-0, 1:CAS:528:DC%2BD3MXntlyisL0%3D

    Article  CAS  Google Scholar 

  5. Beguin P, Aubert J P. The biological degradation of cellulose. FEMS Microbiol Rev, 1994, 13: 25–58, 8117466, 10.1111/j.1574-6976.1994.tb00033.x, 1:CAS:528:DyaK2cXhsFyhsbk%3D

    Article  CAS  Google Scholar 

  6. Tomme P, Warren R A, Gilkes N R. Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol, 1995, 37: 1–81, 8540419, 10.1016/S0065-2911(08)60143-5, 1:STN:280:DyaK287is1Wgsw%3D%3D

    Article  CAS  Google Scholar 

  7. Linder M, Teeri T T. The roles and function of cellulose-binding domains. J Biotechnol, 1997, 57: 15–28, 10.1016/S0168-1656(97)00087-4, 1:CAS:528:DyaK2sXmvVarsL4%3D

    Article  CAS  Google Scholar 

  8. Din N, Gilkes N R, Tekant B, et al. Non-hydrolytic disruption of cellulose fibres by the binding domain of a bacterial cellulase. Bio/Technology, 1991, 9: 1096–1099, 10.1038/nbt1191-1096, 1:CAS:528:DyaK38Xhslansrg%3D

    Article  CAS  Google Scholar 

  9. Din N, Damude H G, Gilkes M N R, et al. C1-Cx revisited: intramolecular synergism in a cellulase. Proc Natl Acad Sci USA, 1994, 91: 11383–11387., 7972069, 10.1073/pnas.91.24.11383, 1:CAS:528:DyaK2MXitlyrsrY%3D

    Article  CAS  Google Scholar 

  10. Yan B X, Sun Y Q. Domain structure and confurmation of a cellobiohydrolase I from Trichodrma Pseudokoningii S-38. J Protein Chem, 1997, 16: 59–66, 9055208, 10.1023/A:1026394912245, 1:STN:280:DyaK2s3gsl2ksA%3D%3D

    Article  CAS  Google Scholar 

  11. Lehtio J, Sugiyama J, Gustavsson, M, et al. The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci USA, 2003, 100(2): 484–489, 12522267, 10.1073/pnas.212651999, 1:CAS:528:DC%2BD3sXnvVKgsA%3D%3D

    Article  CAS  Google Scholar 

  12. Tormo J, Lamed R, Chirino A J, et al. Crystal structure of a bacterial family-III cellulose-binding domain: A general mechanism for attachment to cellulose. EMBO J, 1996, 15(21): 5739–5751, 8918451, 1:CAS:528:DyaK28XntVakurc%3D

    CAS  Google Scholar 

  13. Mattinen M L, Linder M, Teleman A, et al. Interaction between cellohexaose and cellulose binding domains from Trichoderma reesei cellulases. FEBS Lett, 1997, 407(3): 291–296, 9175871, 10.1016/S0014-5793(97)00356-6, 1:CAS:528:DyaK2sXivFyrsro%3D

    Article  CAS  Google Scholar 

  14. Reinikainen T, Ruohonen L, Nevanen T, et al. Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase. Proteins, 1989, 14: 475–482, 10.1002/prot.340140408

    Article  Google Scholar 

  15. Linder M, Mattinen M L, Kontteli M, et al. Identification of functionally important amino acids in the cellulose-binding domain of Trichoderma reesei cellobiohydrolase I. Protein Sci, 1995, 4(6): 1056–1064, 7549870, 1:CAS:528:DyaK2MXmsFyrs7w%3D

    Article  CAS  Google Scholar 

  16. Hoffren A M, Teeri T T, Teleman O. Molecular dynamics simulation of fungal cellulose-binding domains: differences in molecular rigidity but a preserved cellulose binding surface. Protein Eng, 1995, 8(5): 443–450, 8532665, 10.1093/protein/8.5.443, 1:CAS:528:DyaK2MXnsV2isLs%3D

    Article  CAS  Google Scholar 

  17. Carrard G, Koivula A, Soderlund H, et al. Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc Natl Acad Sci USA, 2000, 97(19): 10342–10347, 10962023, 10.1073/pnas.160216697, 1:CAS:528:DC%2BD3cXms1Crs7s%3D

    Article  CAS  Google Scholar 

  18. Linder M, Teeri T T. The cellulose-binding domain of the major cellubiohydrolase I of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose. Proc Natl Acad Sci USA, 1996, 93: 12251–12255, 8901566, 10.1073/pnas.93.22.12251, 1:CAS:528:DyaK28Xms1Gjsbw%3D

    Article  CAS  Google Scholar 

  19. Bray M R, Johnson P E, Gilkes N R, et al. Probing the role of tryptophan residues in a cellulose-binding domain by chemical modification. Protein Sci, 1996, 5(11): 2311–2318, 8931149, 1:CAS:528:DyaK28XntVKqtbs%3D, 10.1002/pro.5560051117

    Article  CAS  Google Scholar 

  20. Creagh A L, Ong E, Jervis E, et al. Binding of the cellulose-binding domain of exoglucanase Cex from Cellulomonas fimi to insoluble microcrystalline cellulose is entropically driven. Proc Natl Acad Sci USA, 1996, 93(22): 12229–12234, 8901562, 10.1073/pnas.93.22.12229, 1:CAS:528:DyaK28Xms1GjsLg%3D

    Article  CAS  Google Scholar 

  21. Pala H, Mota M, Gama F M. Enzymatic versus chemical deinking of non-impact ink printed paper. J Biotechnol, 2004, 108(1): 79–89, 14741771, 10.1016/j.jbiotec.2003.10.016, 1:CAS:528:DC%2BD2cXmvF2jsg%3D%3D

    Article  CAS  Google Scholar 

  22. Gao P J, Chen G J, Wang T H, et al. Non-hydrolytic disruption of crystalline structure of cellulose by cellulose-binding domain and linker sequence of cellobiohydrolase I from Penicillium Janthinellum. Acta Biochim Biophys Sin, 2001, 33: 13–18, 12053182, 1:CAS:528:DC%2BD3MXhvFWjsrg%3D

    CAS  Google Scholar 

  23. Esteghlalian A R, Srivastava V, Gilkes N R, et al. Do cellulose binding domains increase substrate accessibility? Appl Biochem Biotechnol, 2001, 91–93: 575–592, 11963886, 10.1385/ABAB:91-93:1-9:575

    Article  Google Scholar 

  24. Jervis E J, Haynes C A, Kilburn D G. Surface diffusion of cellulases and their isolated binding domains on cellulose. J Biol Chem, 1997, 272(38): 24016–24023, 9295354, 10.1074/jbc.272.38.24016, 1:CAS:528:DyaK2sXmtlOmurs%3D

    Article  CAS  Google Scholar 

  25. Mansfield S D, Mooney C, Saddler J N. Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog, 1999, 15(5): 804–816, 10514250, 10.1021/bp9900864, 1:CAS:528:DyaK1MXlvVeqsrs%3D

    Article  CAS  Google Scholar 

  26. Ma D B, Gao P J, Wang Z N. Preliminary Studies on the mechanism of cellulose formation by Trichoderma pserdokoningii S-38. Enzyme Microb Technol, 1990, 12: 631–635, 10.1016/0141-0229(90)90139-H, 1:CAS:528:DyaK3cXkvFCmurs%3D

    Article  CAS  Google Scholar 

  27. Yan B X, Gao P J. Purification of two cellobiohydrolase from Trichoderma pseudokoningii S-38. Chin Biochem J (in Chinese), 1997, 13: 362–364, 1:CAS:528:DyaK2sXkslWitb8%3D

    CAS  Google Scholar 

  28. Wang T H, Wang C H, Gao P J, et al. Subcloning and expression of coding region for cellulose binding domain of CBHI from P. janthinelium in E. coli. Acta Microbiol Sin (in Chinese), 1998, 38: 269–275, 1:CAS:528:DyaK1cXmtV2qtLo%3D

    CAS  Google Scholar 

  29. Gao PJ, Zhang Y S. Studies of the fucntion of cellulose binding domain of cellobiohydrolase. Abstr Sci J China, 1994, 4: 974–976

    Google Scholar 

  30. Medve J, Stahlberg J, Tjerneld F. Isotherms for adsorption of cellobiohydrolase I and II from Trichoderma reesei on microcrystalline cellulose. Appl Biochem Biotechnol, 1997, 66(1): 39–56, 9204518, 10.1007/BF02788806, 1:CAS:528:DyaK2sXktVCqsrs%3D

    Article  CAS  Google Scholar 

  31. Tripp VW. Measurement of crystallinity. In: Bikales N M, Segel L. eds. Cellulose and Cellulose Derivatives. New York: Wiley Inter Science, 1971. 319–320

    Google Scholar 

  32. Kraulis J, Clore G M, Nilges M, et al. Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry, 1989, 28(18): 7241–7257, 2554967, 10.1021/bi00444a016, 1:CAS:528:DyaL1MXlt12ksrk%3D

    Article  CAS  Google Scholar 

  33. Nishiyama Y, Langan P, Chanzy H. Crystal structure and hydrogen-bonding system in cellulose Ibeta from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc, 2002, 124(31): 9074–9082, 12149011, 10.1021/ja0257319, 1:CAS:528:DC%2BD38Xlt1eqsLk%3D

    Article  CAS  Google Scholar 

  34. Heiner A P, Sugiyama J, Teleman O. Crystalline cellulose I and I studied by molecular dynamics simulation. Carbohydr Res, 1995, 273(2): 207–223, 10.1016/0008-6215(95)00103-Z, 1:CAS:528:DyaK2MXotFOkt7w%3D

    Article  CAS  Google Scholar 

  35. Sugiyama J, Vuong R, Chanzy H. Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules, 1991, 24(14): 4168–4175, 10.1021/ma00014a033, 1:CAS:528:DyaK3MXktlWgtLg%3D

    Article  CAS  Google Scholar 

  36. Nimlos M R, Matthews J F, Crowley M F, et al. Molecular modeling suggests induced fit of Family I carbohydrate-binding modules with a broken-chain cellulose surface. Protein Eng Des Sel, 2007, 20(4): 179–187, 17430975, 10.1093/protein/gzm010, 1:CAS:528:DC%2BD2sXmt1Oju7Y%3D

    Article  CAS  Google Scholar 

  37. Sun H, Mumby S J, Maple J R, et al. An ab initio cff93 all-atom force field for polycarbonates. J Am Chem Soc, 1994, 116: 2978–2987, 10.1021/ja00086a030, 1:CAS:528:DyaK2cXitFyqt7w%3D

    Article  CAS  Google Scholar 

  38. Berendsen H J C, Postma J P M, Gunsteren W F, et al. Molecular dynamics with coupling to an external bath. J Chem Phys, 1984, 81: 3684–3690, 10.1063/1.448118, 1:CAS:528:DyaL2cXmtlGksbY%3D

    Article  CAS  Google Scholar 

  39. Xiao Z H, Gao P J, Qu Y B, et al. Cellulose-binding domain of endoglucanase III from Trichoderma reesei disrupting the structure of cellulose. Biotechnol Lett, 2001, 23: 711–715, 10.1023/A:1010325122851, 1:CAS:528:DC%2BD3MXjvVSjur0%3D

    Article  CAS  Google Scholar 

  40. Wang L S, Liu J, Zhang Y Z, et al. Comparison of domains function between cellobiohydrolase I and endoglucanase I from Trichoderma pseudokoningii S-38 by limited proteolysis. J Mol Cata B: Enzymatic, 2003, 24–25: 27–38, 10.1016/S1381-1177(03)00070-5, 1:CAS:528:DC%2BD3sXmvVyhu78%3D

    Article  Google Scholar 

  41. Nidetzky B, Steiner W, Claecyssens M. Cellulose hydrolysis by The cellulose from Trichoderma reesei: adsorption of two cellobiohydrlases, two endoglucannases and their core proteins on filter paper and their relation to hydrolysis. Biochem J, 1994, 303: 817–823, 7980450, 1:CAS:528:DyaK2cXmvFGrtr0%3D

    Article  CAS  Google Scholar 

  42. Kyriacon A, Neufeld R J, MacKenzi C R. Reversibility and competition in the adsorption of Trichoderma reesei cellulose components. Biotechnol Bioeng, 1989, 33: 631–637, 10.1002/bit.260330517

    Article  Google Scholar 

  43. Stahlberg J, Johansson G, Pettersson G. Trichoderma reesei has no true exo-cellulase: all intact and truncated cellulase produce new reducing end groups on cellulose. Biochim Biophys Acta, 1993, 1157: 107–113, 8499476, 1:CAS:528:DyaK3sXkt1ens74%3D

    Article  CAS  Google Scholar 

  44. Michell A J. Second-derivative F.T-I.R spectra of cellulose I and II and related mono-and oligo-saccharides. Carbohydr Res, 1988, 193: 185–195, 10.1016/S0008-6215(00)90814-0

    Article  Google Scholar 

  45. Michell A J. Second-derivative F.T-I.R spectra of native cellulose. Carbohydr Res, 1990, 197: 53–60, 10.1016/0008-6215(90)84129-I, 1:CAS:528:DyaK3cXhs1SrsrY%3D

    Article  CAS  Google Scholar 

  46. Linder M, Lindeberg G, Reinikainen T, et al. The difference in affinity between two fungal cellulose-binding domains is dominated by a single amino acid substution. FEBS Lett, 1995, 372: 96–98, 7556652, 10.1016/0014-5793(95)00961-8, 1:CAS:528:DyaK2MXosVOit70%3D

    Article  CAS  Google Scholar 

  47. Nishio M, Hirota M, Umezwa Y. The CH/p Interaction: Evidence, Nature, and Consequences. New York: Wiley, 1998

    Google Scholar 

  48. Marechal Y, Chanzy H. The hydrogen bond network in I cellulose as observed by infrared spectrometry. J Mol Struct, 2000, 523: 183–196, 10.1016/S0022-2860(99)00389-0, 1:CAS:528:DC%2BD3cXitlKrsb8%3D

    Article  CAS  Google Scholar 

  49. Leach AR. Molecular Modelling. 2nd ed. London: Pearson Education, 2001

    Google Scholar 

  50. Jeffrey GA. An Introduction to Hydrogen Bonding. Oxford: Oxford University Press, 1997

    Google Scholar 

  51. Nishiyama Y, Sugiyama J, Chanzy H, et al. Crystal structure and hydrogen bonding system in cellulose I(alpha) from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc, 2003, 125(47): 14300–14306, 14624578, 10.1021/ja037055w, 1:CAS:528:DC%2BD3sXoslWhsr4%3D

    Article  CAS  Google Scholar 

  52. Hinterstoisser B, Salmen L. Application of dynamic 2D FTIR to cellulose. Vib Spectrosc, 2000, 22: 111–118, 10.1016/S0924-2031(99)00063-6, 1:CAS:528:DC%2BD3cXhtFensrk%3D

    Article  CAS  Google Scholar 

  53. Benziman M, Haigler C H, Brown R M J, et al. Cellulose biogenesis: Polymerization and crystallization are coupled processes in Acetobacter xylium. Proc Natl Acad Sci USA, 1980, 77: 6678–6682, 16592918, 10.1073/pnas.77.11.6678, 1:CAS:528:DyaL3MXislSqug%3D%3D

    Article  CAS  Google Scholar 

  54. Henriksson H, Stahlberg I R, Pettersson G. The active sites of cellulases are involved in chiral recognition: A comparison of cellobiohydrolase I and endoglucanase I. FEBS Lett, 1996, 390: 339–344, 8706890, 10.1016/0014-5793(96)00685-0, 1:CAS:528:DyaK28XksF2gurc%3D

    Article  CAS  Google Scholar 

  55. Teeri T T, Koivula A, Linder M, et al. Trichoderma reesei cellobiohydrolase: Why so efficient on crystalline cellulose? Biochem Soc Trans, 1998, 26: 173–178, 9649743, 1:CAS:528:DyaK1cXjvVaktbs%3D

    Article  CAS  Google Scholar 

  56. Varrot A, Frandsen T P, Ossowski I, et al. Structural basis for ligand binding and processivity in cellobiohydrolase Cel6A from Humicola insolens. Structure (Camb), 2003, 11(7): 855–864, 10.1016/S0969-2126(03)00124-2, 1:CAS:528:DC%2BD3sXltF2mtr0%3D

    Article  CAS  Google Scholar 

  57. Davies G J, Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure, 1995, 3: 853–859, 8535779, 10.1016/S0969-2126(01)00220-9, 1:CAS:528:DyaK2MXotlWktrY%3D

    Article  CAS  Google Scholar 

  58. Rouvinen J, Bergfors T, Teeri T, et al. Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science, 1990, 249(4967): 380–386, 2377893, 10.1126/science.2377893, 1:CAS:528:DyaK3cXmtVOgurw%3D

    Article  CAS  Google Scholar 

  59. Sinnott M L. The cellobiohydrolase of Trichoderma reesei: A review of indirect and direct evidence that their function is not just glycoside bond hydrolysis. Biochem Soc Trans, 1998, 26: 160–164, 9649740, 1:CAS:528:DyaK1cXjvVaktbw%3D

    Article  CAS  Google Scholar 

  60. Armand S, Drouillard S, Schulein M, et al. Bifunctionalized fluorogenic tetrasaccharide as a substrate to study cellulases. J Biol Chem, 1997, 272(5): 2709–2713, 9006908, 10.1074/jbc.272.5.2709, 1:CAS:528:DyaK2sXpslelsA%3D%3D

    Article  CAS  Google Scholar 

  61. Reese E T, Siu R G H, Leyinson H S. Biological degradation of soluble cellulose derivatives. J Bact, 1950, 59: 485–497, 15436422, 1:CAS:528:DyaG3cXjsVGrug%3D%3D

    CAS  Google Scholar 

  62. McQueen-Mason S, Cosgrove J. Disruption of hydrogen binding between plant cell wall polymers by proteins that induce wall extension. Proc Natl Acad Sci USA, 1994, 91: 6574–6578, 11607483, 10.1073/pnas.91.14.6574, 1:CAS:528:DyaK2cXkslyms7c%3D

    Article  CAS  Google Scholar 

  63. Saloheimo M, Paloheimo M, Hakola S, et al. Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem, 2002, 269(17): 4202–4211, 12199698, 10.1046/j.1432-1033.2002.03095.x, 1:CAS:528:DC%2BD38Xnt1eitbc%3D

    Article  CAS  Google Scholar 

  64. Shpigel E, Roiz L, Goren R, et al. Bacterial cellulose-binding domain modulates in Yitro elongation of different plant cells. Plant Physiol, 1998, 117: 1185–1194, 9701575, 10.1104/pp.117.4.1185, 1:CAS:528:DyaK1cXlsFaqtr8%3D

    Article  CAS  Google Scholar 

  65. Banka R R, Mishra S. Adsorption properties of the fibril forming protein from Trichoderma reesei. Enzyme Microb Technol, 2002, 31: 784–793, 10.1016/S0141-0229(02)00176-X, 1:CAS:528:DC%2BD38Xns1aksLo%3D

    Article  CAS  Google Scholar 

  66. Srisodsuk M, Lehtio J, Linder M, et al. Trichoderma reesei cellobio-hydrolase I with an endoglucanase cellulose-binding domain: action on bacterial microcrystalline cellulose. J Biotechnol, 1997, 57(1–3): 49–57, 9335165, 10.1016/S0168-1656(97)00088-6, 1:CAS:528:DyaK2sXmvVarsL0%3D

    Article  CAS  Google Scholar 

  67. Nigmatullin R, Lovitt R, Wright C, et al. Atomic force microscopy study of cellulose surface interaction controlled by cellulose binding domains. Colloids Surf B Biointerfaces, 2004, 35(2): 125–135, 15261045, 10.1016/j.colsurfb.2004.02.013, 1:CAS:528:DC%2BD2cXjvVKjtbo%3D

    Article  CAS  Google Scholar 

  68. Post C B. Reexamination of induced fit as a determinant of substrate specificity in enzymatic reactions. Biochemistry, 1995, 34: 15881–15885, 8519743, 10.1021/bi00049a001, 1:CAS:528:DyaK2MXpsVGitro%3D

    Article  CAS  Google Scholar 

  69. Lee I, Evans B R, Woodward J. The mechanism of cellulase action on cotton fibers: Evidence from atomic force microscopy. Ultramicroscopy, 2000, 82(1–4): 213–221, 10741672, 10.1016/S0304-3991(99)00158-8, 1:CAS:528:DC%2BD3cXosleisQ%3D%3D

    Article  CAS  Google Scholar 

  70. Henrissat B, Vigny B, Buleon A, et al. Possible adsorption sites of cellulases on crystalline cellulose. FEBS Lett, 1988, 231: 177–182, 10.1016/0014-5793(88)80726-9, 1:CAS:528:DyaL1cXktF2gtr0%3D

    Article  CAS  Google Scholar 

  71. Sild V, Stahlberg J, Pettersson G, et al. Effect of potential binding site overlap to binding of cellulase to cellulose: A two-dimensional simulation. FEBS Lett, 1996, 378(1): 51–56, 8549801, 10.1016/0014-5793(95)01420-9, 1:CAS:528:DyaK28Xns1yktQ%3D%3D

    Article  CAS  Google Scholar 

  72. Bolam D N, Ciruela A, McQueen-Mason S, et al. Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem J, 1998, 331( Pt 3): 775–781, 9560304, 1:CAS:528:DyaK1cXjt12hsr8%3D

    Article  CAS  Google Scholar 

  73. Receveur V, Czjzek M, Schulein M, et al. Dimension, shape, and conformational flexibility of a two domain fungal cellulase in solution probed by small angle X-ray scattering. J Biol Chem, 2002, 277(43): 40887–40892, 12186865, 10.1074/jbc.M205404200, 1:CAS:528:DC%2BD38XnvFynu7w%3D

    Article  CAS  Google Scholar 

  74. Wang C C, Tsou C L. Protein disulfide isomerase is both an enzyme and a chaperone. FASEB J, 1993, 7(15): 1515–1517, 7903263, 1:CAS:528:DyaK2cXnt1SisA%3D%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PeiJi Gao.

Additional information

Supported by the National Natural Science Foundation of China (Grants No. 30500007), Major State Basic Research Development Research Program of China (Grant No. 2004CB719702), and Scientific Research Reward Fund for Excellent Young and Middle-Aged Scientists in Shandong Province (Grants No. 2005BS06004)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Zhang, Y. & Gao, P. A novel function for the cellulose binding module of cellobiohydrolase I. SCI CHINA SER C 51, 620–629 (2008). https://doi.org/10.1007/s11427-008-0088-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0088-3

Keywords

Navigation