Skip to main content
Log in

VEGF-specific siRNAs modified with 2′-deoxy effectively suppress VEGF expression and inhibit growth of nasopharyngeal carcinoma xenograft in a mouse model

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Vascular endothelial growth factor (VEGF) is up-regulated in the vast majority of human tumors. The up-regulation of VEGF not only plays important roles in tumor angiogenesis, but also provides a target for tumor treatment with small interfering RNA (siRNA) that targets VEGF; however, it is unclear whether a quite high up-regulation of VEGF will affect the efficiency of RNA interference strategies targeting VEGF. A high level expression of VEGF was found in CNE cells from a nasopharyngeal carcinoma cell line. In this study, we investigate whether VEGF-specific siRNAs can effectively suppress VEGF expression in CNE cells, and study the methods for the use of VEGF-specific siRNAs as potential therapeutic agents. CNE cells with high VEGF expression induced by hypoxia were transfected with VEGF-specific siRNAs. The expression of VEGF was effectively suppressed by VEGF-specific siRNAs, measured by ELISA, Western blot analysis and RT-PCR. Furthermore, experiments in nude mice bearing nasopharyngeal carcinoma xenograft were initiated 5 d after injection of CNE cells. VEGF-specific siRNAs were modified with 2′-deoxy, then injected into the tumors, and a liposome-mediated siRNA transfection system and ultrasound exposure were used to help delivery of the siRNAs. Tumor growth was reduced significantly after 3 weeks’ treatment. These studies suggest that VEGF-specific siRNAs still can effectively suppress VEGF expression even in tumor cell lines with a relatively high level of VEGF expression, such as CNE, and VEGF-specific siRNAs modified with 2′-deoxy can be used as potential agents for tumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med, 1995, 1: 27–31

    Article  PubMed  CAS  Google Scholar 

  2. Zetter B R. Angiogenesis and tumor metastasis. Annu Rev Med, 1998, 49: 407–424

    Article  PubMed  CAS  Google Scholar 

  3. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev, 1997, 18: 4–25

    Article  PubMed  CAS  Google Scholar 

  4. Ferrara N, Gerber H P, LeCouter J. The biology of VEGF and its receptors. Nat Med, 2003, 9: 669–676

    Article  PubMed  CAS  Google Scholar 

  5. Raab-Traub N, Flynn K. The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell, 1986, 47: 883–889

    Article  PubMed  CAS  Google Scholar 

  6. Pathmanathan R, Prasad U, Sadler R, et al. Clonal proliferations of cells infected with Epstein-Barr virus in preinvasive lesions related to nasopharyngeal carcinoma. N Engl J Med, 1995, 333: 693–698

    Article  PubMed  CAS  Google Scholar 

  7. Murono S, Inoue H, Tanabe T, et al. Induction of cyclooxygenase-2 by Epstein-Barr virus latent membrane protein 1 is involved in vascular endothelial growth factor production in nasopharyngeal carcinoma cells. Proc Natl Acad Sci USA, 2001, 98: 6905–6910

    Article  PubMed  CAS  Google Scholar 

  8. Lieberman J, Song E, Lee S K, et al. Interfering with disease: opportunities and roadblocks to harnessing RNA interference. Trends Mol Med, 2003, 9: 397–403

    Article  PubMed  CAS  Google Scholar 

  9. Mello CC, Conte D Jr. Revealing the world of RNA interference. Nature, 2004, 431: 338–342

    Article  PubMed  CAS  Google Scholar 

  10. Elbashir S M, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate interference in cultured mammalian cells. Nature, 2001, 411: 494–498

    Article  PubMed  CAS  Google Scholar 

  11. Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference. Nat Biotechnol, 2004, 22: 326–330

    Article  PubMed  CAS  Google Scholar 

  12. Takei Y, Kadomatsu K, Yuzawa Y, et al. A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res, 2004, 64: 3365–3370

    Article  PubMed  CAS  Google Scholar 

  13. Burfeind P, Chernicky C L, Rininsland F, et al. Antisense RNA to the type I insulin-like growth factor receptor suppresses tumor growth and prevents invasion by rat prostate cancer cells in vivo. Proc Natl Acad Sci USA, 1996, 93: 7263–7268

    Article  PubMed  CAS  Google Scholar 

  14. Hui E P, Chan A T, Pezzella F, et al. Coexpression of hypoxia-inducible factors 1alpha and 2alpha, carbonic anhydrase IX, and vascular endothelial growth factor in nasopharyngeal carcinoma and relationship to survival. Clin Cancer Res, 2002, 8: 2595–2604

    PubMed  CAS  Google Scholar 

  15. Verma I M, Somia N. Gene therapy: promises, problems and prospects. Nature 1997, 389: 239–242

    Article  PubMed  CAS  Google Scholar 

  16. Niidome T, Huang L. Gene therapy progress and prospects: nonviral vectors. Gene Therapy, 2002, 9: 1647–1652

    Article  PubMed  CAS  Google Scholar 

  17. Li S, Huang L. Nonviral gene therapy: promises and challenges. Gene Therapy, 2000, 7: 31–34

    Article  PubMed  CAS  Google Scholar 

  18. Tachibana K, Uchida T, Ogawa K, et al. Induction of cell-membrane porosity by ultrasound. Lancet, 1999, 353: 1409–1411

    Article  PubMed  CAS  Google Scholar 

  19. Gambihler S, Delius M, Ellwart J W. Permeabilization of the plasma membrane of L1210 mouse leukemia cells using lithotripter shock waves. J Membr Biol, 1994, 141: 267–275

    PubMed  CAS  Google Scholar 

  20. Lawrie A, Brisken A F, Francis S E, et al. Ultrasound enhances reporter gene expression after transfection of vascular cells in vitro. Circulation, 1999, 99: 2617–2620

    PubMed  CAS  Google Scholar 

  21. Bekeredjian R, Chen S, Frenkel P A, et al. Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation, 2003, 108: 1022–1026

    Article  PubMed  Google Scholar 

  22. Chiu Y L, Rana T M. SiRNA function in RNAi: A chemical modification analysis. RNA, 2003, 9: 1034–1048

    Article  PubMed  CAS  Google Scholar 

  23. Hall A H S, Wan J, Shaughnessy E E, et al. RNA interference using boranophosphate siRNAs: Structure-activity relationships. Nucleic Acids Res, 2004, 32: 5991–6000

    Article  PubMed  CAS  Google Scholar 

  24. Braasch D, Jensen S, Liu Y, et al. RNA interference in mammalian cells by chemically-modified RNA. Biochemistry, 2003, 42: 7967–7975

    Article  PubMed  CAS  Google Scholar 

  25. Layzer J M, Mccaffrey A P, Tanner A K, et al. In vivo activity of nucleaseresistant siRNAs. RNA, 2004, 10: 766–771

    Article  PubMed  CAS  Google Scholar 

  26. Amarzguioui M, Holen T, Babaie E, et al. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res, 2003, 31: 589–595

    Article  PubMed  CAS  Google Scholar 

  27. Czauderna F, Fechtner M, Dames S. Structural variations and stabilizing modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res, 2003, 31: 2705–2716

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wang ShaYan or Zhang YaOu.

Additional information

Supported by Natural Science Foundation of Guangdong Province, China (Grant No. 012402)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Gao, G., Chen, W. et al. VEGF-specific siRNAs modified with 2′-deoxy effectively suppress VEGF expression and inhibit growth of nasopharyngeal carcinoma xenograft in a mouse model. Sci. China Ser. C-Life Sci. 51, 104–110 (2008). https://doi.org/10.1007/s11427-008-0020-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0020-1

Keywords

Navigation