Skip to main content
Log in

Two-dimensional semiconductor heterostructures for photocatalytic CO2 conversion

  • Mini Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The CO2 reduction into carbon-contained fuel via solar energy offers the powerful tools to realize the zero-emission carbon cycle. Owing to the intriguing features of the two-dimensional (2D) heterostructures, it is susceptible to modulate the electronic structure as well as the surface geometry for optimizing the photocatalytic CO2 reactivity. From this perspective, we surveyed the fundamental insights of 2D semiconductor heterostructures, involving the fabrication strategies and classification of the 2D semiconductor heterostructure. Also, we have detailly discussed the overview of 2D semiconductor heterostructure for optimizing CO2 photocatalytic influenced factors, including the solar energy utilization, photogenerated carriers separation, and redox reaction kinetics. Afterwards, we showed the significant advantages of 2D heterostructures in elevating CO2 photoreduction performance, focusing on activity, selectivity and photostability. By analyzing the limitations and developments, we ended by putting forward insights into the further researches about the CO2 photocatalysts and reactor design, even industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiao X, Zheng K, Liang L, Li X, Sun Y, Xie Y. Chem Soc Rev, 2020, 49: 6592–6604

    Article  CAS  PubMed  Google Scholar 

  2. Li L, Sun YF, Xie Y. Natl Sci Rev, 2023, 10: nwac230

    Article  PubMed  Google Scholar 

  3. Ran J, Jaroniec M, Qiao SZ. Adv Mater, 2018, 30: 1704649

    Article  Google Scholar 

  4. Jiao X, Zheng K, Hu Z, Sun Y, Xie Y. ACS Cent Sci, 2020, 6: 653–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liang L, Ling P, Li Y, Li L, Liu J, Luo Q, Zhang H, Xu Q, Pan Y, Zhu J, Ye B, Sun Y. Sci China Chem, 2021, 64: 953–958

    Article  CAS  Google Scholar 

  6. Yu X, Yang Z, Qiu B, Guo S, Yang P, Yu B, Zhang H, Zhao Y, Yang X, Han B, Liu Z. Angew Chem Int Ed, 2019, 58: 632–636

    Article  CAS  Google Scholar 

  7. Jiao X, Li X, Jin X, Sun Y, Xu J, Liang L, Ju H, Zhu J, Pan Y, Yan W, Lin Y, Xie Y. J Am Chem Soc, 2017, 139: 18044–18051

    Article  CAS  PubMed  Google Scholar 

  8. Li X, Sun Y, Xu J, Shao Y, Wu J, Xu X, Pan Y, Ju H, Zhu J, Xie Y. Nat Energy, 2019, 4: 690–699

    Article  CAS  Google Scholar 

  9. Shen Y, Ren C, Zheng L, Xu X, Long R, Zhang W, Yang Y, Zhang Y, Yao Y, Chi H, Wang J, Shen Q, Xiong Y, Zou Z, Zhou Y. Nat Commun, 2023, 14: 1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wei W, Wei Z, Li R, Li Z, Shi R, Ouyang S, Qi Y, Philips DL, Yuan H. Nat Commun, 2022, 13: 3199

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ou H, Li G, Ren W, Pan B, Luo G, Hu Z, Wang D, Li Y. J Am Chem Soc, 2022, 144: 22075–22082

    Article  CAS  PubMed  Google Scholar 

  12. Sabbah A, Shown I, Qorbani M, Fu F, Lin T, Wu H, Chung P, Wu CI, Santiago SRM, Shen J, Chen K, Chen L. Nano Energy, 2022, 93: 106809

    Article  CAS  Google Scholar 

  13. Zhao X, Levell ZH, Yu S, Liu Y. Chem Rev, 2022, 122: 10675–10709

    Article  CAS  PubMed  Google Scholar 

  14. Huo Z, Wei Y, Wang Y, Wang ZL, Sun Q. Adv Funct Mater, 2022, 32: 2206900

    Article  CAS  Google Scholar 

  15. Zhang D, Pan W, Tang M, Wang D, Yu S, Mi Q, Pan Q, Hu Y. Nano Res, 2023, 16: 11959–11991

    Article  Google Scholar 

  16. Wang H, Chen J, Lin Y, Wang X, Li J, Li Y, Gao L, Zhang L, Chao D, Xiao X, Lee JM. Adv Mater, 2021, 33: 2008422

    Article  CAS  Google Scholar 

  17. Fan FR, Wang R, Zhang H, Wu W. Chem Soc Rev, 2021, 50: 10983–11031

    Article  CAS  PubMed  Google Scholar 

  18. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA. Adv Mater, 2017, 29: 1601694

    Article  Google Scholar 

  19. He Y, Lei Q, Li C, Han Y, Shi Z, Feng S. Mater Today, 2021, 50: 358–384

    Article  CAS  Google Scholar 

  20. Zhou Y, Wang Z, Huang L, Zaman S, Lei K, Yue T, Li Z, You B, Xia BY. Adv Energy Mater, 2021, 11: 2003159

    Article  CAS  Google Scholar 

  21. Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J. Nat Nanotechnol, 2010, 5: 722–726

    Article  CAS  PubMed  Google Scholar 

  22. Rogée L, Wang L, Zhang Y, Cai S, Wang P, Chhowalla M, Ji W, Lau SP. Science, 2022, 376: 973–978

    Article  PubMed  Google Scholar 

  23. Syed GS, Zhou Y, Warner J, Bhaskaran H. Nat Nanotechnol, 2023, 18: 828

    Article  CAS  PubMed  Google Scholar 

  24. Li X, Jones AC, Choi J, Zhao H, Chandrasekaran V, Pettes MT, Piryatinski A, Tschudin MA, Reiser P, Broadway DA, Maletinsky P, Sinitsyn N, Crooker SA, Htoon H. Nat Mater, 2023, 22: 1311–1316

    Article  CAS  PubMed  Google Scholar 

  25. Barré E, Karni O, Liu E, O’Beirne AL, Chen X, Ribeiro HB, Yu L, Kim B, Watanabe K, Taniguchi T, Barmak K, Lui CH, Refaely-Abramson S, Jornada FH, Heinz TF. Science, 2022, 376: 406–410

    Article  PubMed  Google Scholar 

  26. Wang H, Liu F, Fu W, Fang Z, Zhou W, Liu Z. Nanoscale, 2014, 6: 12250–12272

    Article  CAS  PubMed  Google Scholar 

  27. Liu Y, Weiss NO, Duan X, Cheng HC, Huang Y, Duan X. Nat Rev Mater, 2016, 1: 16042

    Article  CAS  Google Scholar 

  28. Sun L, Yuan G, Gao L, Yang J, Chhowalla M, Gharahcheshmeh MH, Gleason KK, Choi YS, Hong BH, Liu Z. Nat Rev Methods Primers, 2021, 1: 5

    Article  CAS  Google Scholar 

  29. Qi J, Wu Z, Wang W, Bao K, Wang L, Wu J, Ke C, Xu Y, He Q. Int J Extrem Manuf, 2023, 5: 022007

    Article  Google Scholar 

  30. Cai Z, Liu B, Zou X, Cheng HM. Chem Rev, 2018, 118: 6091–6133

    Article  CAS  PubMed  Google Scholar 

  31. Muratore C, Voevodin AA, Glavin NR. Thin Solid Films, 2019, 688: 137500

    Article  CAS  Google Scholar 

  32. Kim HG, Lee HBR. Chem Mater, 2017, 29: 3809–3826

    Article  CAS  Google Scholar 

  33. Dong J, Zhang L, Dai X, Ding F. Nat Commun, 2020, 11: 5862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Prabhu P, Jose V, Lee JM. Matter, 2020, 2: 526–553

    Article  Google Scholar 

  35. Li Z, Zhang X, Cheng H, Liu J, Shao M, Wei M, Evans DG, Zhang H, Duan X. Adv Energy Mater, 2019, 10: 1900486

    Article  Google Scholar 

  36. Jiao X, Hu Z, Li L, Wu Y, Zheng K, Sun Y, Xie Y. Sci China Chem, 2022, 65: 428–440

    Article  CAS  Google Scholar 

  37. Fang S, Rahaman M, Bharti J, Reisner E, Robert M, Ozin GA, Hu YH. Nat Rev Methods Primers, 2023, 3: 61

    Article  CAS  Google Scholar 

  38. Gong E, Ali S, Hiragond CB, Kim HS, Powar NS, Kim D, Kim H, In SI. Energy Environ Sci, 2022, 15: 880–937

    Article  CAS  Google Scholar 

  39. Li J, Huang B, Guo Q, Guo S, Peng Z, Liu J, Tian Q, Yang Y, Xu Q, Liu Z, Liu B. Appl Catal B-Environ, 2021, 284: 119733

    Article  CAS  Google Scholar 

  40. Zhong Y, Wu C, Chen D, Zhang J, Feng Y, Xu K, Hao W, Ding H, Lv G, Du Y, Wang L. Appl Catal B-Environ, 2023, 329: 122554

    Article  CAS  Google Scholar 

  41. Li N, Chen X, Wang J, Liang X, Ma L, Jing X, Chen DL, Li Z. ACS Nano, 2022, 16: 3332–3340

    Article  CAS  PubMed  Google Scholar 

  42. Xu Q, Zhang L, Yu J, Wageh S, Al-Ghamdi AA, Jaroniec M. Mater Today, 2018, 21: 1042–1063

    Article  CAS  Google Scholar 

  43. Sun R, Wang Y, Zhang Z, Qu Y, Li Z, Li B, Wu H, Hua X, Zhang S, Zhang F, Jing L. Chem Eng J, 2021, 426: 131266

    Article  CAS  Google Scholar 

  44. Bian J, Zhang Z, Feng J, Thangamuthu M, Yang F, Sun L, Li Z, Qu Y, Tang D, Lin Z, Bai F, Tang J, Jing L. Angew Chem Int Ed, 2021, 60: 20906–20914

    Article  CAS  Google Scholar 

  45. Ou S, Zhou M, Chen W, Zhang Y, Liu Y. ChemSusChem, 2022, 15: e202200184

    Article  CAS  PubMed  Google Scholar 

  46. Wang XD, Huang YH, Liao JF, Jiang Y, Zhou L, Zhang XY, Chen HY, Kuang DB. J Am Chem Soc, 2019, 141: 13434–13441

    Article  CAS  PubMed  Google Scholar 

  47. Wang L, Zhao X, Lv D, Liu C, Lai W, Sun C, Su Z, Xu X, Hao W, Dou SX, Du Y. Adv Mater, 2020, 32: 2004311

    Article  CAS  Google Scholar 

  48. Mu YF, Zhang C, Zhang MR, Zhang W, Zhang M, Lu TB. ACS Appl Mater Interfaces, 2021, 13: 22314–22322

    Article  CAS  PubMed  Google Scholar 

  49. Li L, Guo C, Ning J, Zhong Y, Chen D, Hu Y. Appl Catal B, 2021, 293: 120203

    Article  CAS  Google Scholar 

  50. Sun L, Zhang Z, Bian J, Bai F, Su H, Li Z, Xie J, Xu R, Sun J, Bai L, Chen C, Han Y, Tang J, Jing L. Adv Mater, 2023, 35: 2300064

    Article  CAS  Google Scholar 

  51. Shao W, Wang S, Zhu J, Li X, Jiao X, Pan Y, Sun Y, Xie Y. Nano Res, 2021, 14: 4520–4527

    Article  CAS  Google Scholar 

  52. Zhao L, Yang B, Zhuang G, Wen Y, Zhang T, Lin M, Zhuang Z, Yu Y. Small, 2022, 18: 2201668

    Article  CAS  Google Scholar 

  53. Das R, Sarkar S, Kumar R, D. Ramarao S, Cherevotan A, Jasil M, Vinod CP, Singh AK, Peter SC. ACS Catal, 2021, 12: 687–697

    Article  Google Scholar 

  54. Zhao L, Bian J, Zhang X, Bai L, Xu L, Qu Y, Li Z, Li Y, Jing L. Adv Mater, 2022, 34: 2205303

    Article  CAS  Google Scholar 

  55. Wu Y, Wu M, Zhu J, Zhang X, Li J, Zheng K, Hu J, Liu C, Pan Y, Zhu J, Sun Y, Xie Y. Sci China Chem, 2023, 66: 1997–2003

    Article  CAS  Google Scholar 

  56. Shi W, Guo X, Cui C, Jiang K, Li Z, Qu L, Wang JC. Appl Catal B-Environ, 2019, 243: 236–242

    Article  CAS  Google Scholar 

  57. He J, Wang X, Jin S, Liu ZQ, Zhu M. Chin J Catal, 2022, 43: 1306–1315

    Article  CAS  Google Scholar 

  58. Qaraah FA, Mahyoub SA, Hezam A, Qaraah A, Xin F, Xiu G. Appl Catal B-Environ, 2022, 315: 121585

    Article  CAS  Google Scholar 

  59. Cao S, Shen B, Tong T, Fu J, Yu J. Adv Funct Mater, 2018, 28: 1800136

    Article  Google Scholar 

  60. Yu F, Jing X, Wang Y, Sun M, Duan C. Angew Chem Int Ed, 2021, 60: 24849–24853

    Article  CAS  Google Scholar 

  61. Bafaqeer A, Tahir M, Amin NAS. Appl Catal B-Environ, 2019, 242: 312–326

    Article  CAS  Google Scholar 

  62. Devarayapalli KC, Kim B, Manchuri AR, Lim Y, Kim G, Lee DS. Appl Surf Sci, 2023, 636: 157865

    Article  CAS  Google Scholar 

  63. Yu K, Hu X, Yao K, Luo P, Wang X, Wang H. RSC Adv, 2017, 7: 36793–36799

    Article  CAS  Google Scholar 

  64. Zhao S, Pan D, Liang Q, Zhou M, Yao C, Xu S, Li Z. J Phys Chem C, 2021, 125: 10207–10218

    Article  CAS  Google Scholar 

  65. Jiang Z, Wan W, Li H, Yuan S, Zhao H, Wong PK. Adv Mater, 2018, 30: 1706108

    Article  Google Scholar 

  66. Chen Y, Wang F, Cao Y, Zhang F, Zou Y, Huang Z, Ye L, Zhou Y. ACS Appl Energy Mater, 2020, 3: 4610–4618

    Article  CAS  Google Scholar 

  67. Wang H, Sun Y, Dong F. Angew Chem Int Ed, 2022, 61: e202209201

    Article  CAS  Google Scholar 

  68. Tian J, Hao P, Wei N, Cui H, Liu H. ACS Catal, 2015, 5: 4530–4536

    Article  CAS  Google Scholar 

  69. Shi H, Long S, Hou J, Ye L, Sun Y, Ni W, Song C, Li K, Gurzadyan GG, Guo X. Chem Eur J, 2019, 25: 5028–5035

    Article  CAS  PubMed  Google Scholar 

  70. Zhang L, Zhang J, Yu H, Yu J. Adv Mater, 2022, 34: 2107668

    Article  CAS  Google Scholar 

  71. Zhou B, Li J, Dong X, Yao L. Sci China Chem, 2023, 66: 739–754

    CAS  Google Scholar 

  72. Zu X, Zhao Y, Li X, Chen R, Shao W, Wang Z, Hu J, Zhu J, Pan Y, Sun Y, Xie Y. Angew Chem Int Ed, 2021, 60: 13840–13846

    Article  CAS  Google Scholar 

  73. Xu F, Meng K, Cheng B, Wang S, Xu J, Yu J. Nat Commun, 2020, 11: 4613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xu F, Zhu B, Cheng B, Yu J, Xu J. Adv Opt Mater, 2018, 6: 1800911

    Article  Google Scholar 

  75. Zhang M, Mao Y, Bao X, Zhai G, Xiao D, Liu D, Wang P, Cheng H, Liu Y, Zheng Z, Dai Y, Fan Y, Wang Z, Huang B. Angew Chem Int Ed, 2023, 62: e202302919

    Article  CAS  Google Scholar 

  76. Huang H, Pradhan B, Hofkens J, Roeffaers MBJ, Steele JA. ACS Energy Lett, 2020, 5: 1107–1123

    Article  CAS  Google Scholar 

  77. Fu CF, Li X, Yang J. Chem Sci, 2021, 12: 2863–2869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2019YFA0210004, 2022YFA1502904, 2022YFA1203600), and National Natural Science Foundation of China (22125503, 52394201, 22321001, U2032212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfu Sun.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Wu, M., Sun, Y. et al. Two-dimensional semiconductor heterostructures for photocatalytic CO2 conversion. Sci. China Chem. (2024). https://doi.org/10.1007/s11426-024-2074-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11426-024-2074-9

Navigation