Skip to main content
Log in

Engineering tantalum nitride for efficient photoelectrochemical water splitting

  • Feature Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Photoelectrochemical (PEC) water splitting is a promising energy conversion strategy for directly converting solar energy into green hydrogen fuel. Constructing an efficient PEC device, finding an efficient photoanode material with a suitable band gap and favorable band-edge positions is essential. Tantalum nitride (Ta3N5) meets these fundamental requirements, and its theoretical maximum solar-to-hydrogen (STH) conversion efficiency can reach 15.9%. Consequently, it has been widely applied as a photoanode material for the PEC oxygen evolution reaction (OER). However, severe bulk and interface charge recombination, along with sluggish water oxygen kinetics, seriously limits its STH conversion efficiency for PEC water splitting. Herein, this feature article briefly reviews recent advances by our research group in improving the STH conversion efficiency of the Ta3N5 photoanode using various strategies, including defect engineering, construction of a gradient band structure, interface engineering, and surface modification of self-healing OER cocatalyst. Up to now, the obtained half-cell STH efficiency has exceeded 4%, providing a solid foundation for the development of tandem PEC devices for unbiased solar-driven overall water splitting toward practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qi J, Zhang W, Cao R. Adv Energy Mater, 2018, 8: 1701620

    Article  Google Scholar 

  2. Ager JW, Shaner MR, Walczak KA, Sharp ID, Ardo S. Energy Environ Sci, 2015, 8: 2811–2824

    Article  CAS  Google Scholar 

  3. Kim JH, Hansora D, Sharma P, Jang JW, Lee JS. Chem Soc Rev, 2019, 48: 1908–1971

    Article  CAS  PubMed  Google Scholar 

  4. Ta XMC, Daiyan R, Nguyen TKA, Amal R, Tran-Phu T, Tricoli A. Adv Energy Mater, 2022, 12: 2201358

    Article  CAS  Google Scholar 

  5. Fujishima A, Honda K. Nature, 1972, 238: 37–38

    Article  CAS  PubMed  Google Scholar 

  6. Yang W, Prabhakar RR, Tan J, Tilley SD, Moon J. Chem Soc Rev, 2019, 48: 4979–5015

    Article  CAS  PubMed  Google Scholar 

  7. Ye KH, Li H, Huang D, Xiao S, Qiu W, Li M, Hu Y, Mai W, Ji H, Yang S. Nat Commun, 2019, 10: 3687

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang S, Liu G, Wang L. Chem Rev, 2019, 119: 5192–5247

    Article  CAS  PubMed  Google Scholar 

  9. Wang W, Xu M, Xu X, Zhou W, Shao Z. Angew Chem Int Ed, 2020, 59: 136–152

    Article  CAS  Google Scholar 

  10. Zhou B, Li J, Dong X, Yao L. Sci China Chem, 2023, 66: 739–754

    CAS  Google Scholar 

  11. Wu L, Tang D, Xue J, Wang S, Ji H, Chen C, Zhang Y, Zhao J. Sci China Chem, 2023, 66: 896–903

    CAS  Google Scholar 

  12. Lin Y, Wang Y, Wang H, Wang J, Wu X, Hofmann JP, Gorni G, de la Pena O’Shea VA, Oropeza FE, Zhang KHL. Sci China Chem, 2023, 66: 2091–2097

    Article  CAS  Google Scholar 

  13. Zeng P, Zhou Y, Peng L, Wang S, Peng T. Sci China Chem, 2023, 66: 3269–3279

    Article  CAS  Google Scholar 

  14. Tang D, Dang K, Wang J, Chen C, Zhao J, Zhang Y. Sci China Chem, 2023, 66: 3415–3425

    Article  CAS  Google Scholar 

  15. Sun L, Peng H, Xue F, Liu S, Hu Z, Geng H, Liu X, Su D, Xu Y, Huang X. Sci China Chem, 2024, 67: 855–861

    Article  CAS  Google Scholar 

  16. Bak T, Nowotny J, Rekas M, Sorrell CC. Int J Hydrogen Energy, 2002, 27: 991–1022

    Article  CAS  Google Scholar 

  17. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS. Chem Rev, 2010, 110: 6446–6473

    Article  CAS  PubMed  Google Scholar 

  18. Wang G, Ling Y, Wang H, Xihong L, Li Y. J PhotoChem PhotoBiol C-PhotoChem Rev, 2014, 19: 35–51

    Article  CAS  Google Scholar 

  19. Wu H, Tan HL, Toe CY, Scott J, Wang L, Amal R, Ng YH. Adv Mater, 2020, 32: 1904717

    Article  CAS  Google Scholar 

  20. Haussener S, Xiang C, Spurgeon JM, Ardo S, Lewis NS, Weber AZ. Energy Environ Sci, 2012, 5: 9922

    Article  CAS  Google Scholar 

  21. Jiang C, Moniz SJA, Wang A, Zhang T, Tang J. Chem Soc Rev, 2017, 46: 4645–4660

    Article  CAS  PubMed  Google Scholar 

  22. Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM. Chem Soc Rev, 2017, 46: 337–365

    Article  CAS  PubMed  Google Scholar 

  23. Ishikawa A, Takata T, Kondo JN, Hara M, Domen K. Phys Chem B, 2004, 108: 11049–11053

    Article  CAS  Google Scholar 

  24. Hillenbrand M, Helbig C, Marschall R. Energy Environ Sci, 2024, 17: 2369–2380

    Article  CAS  Google Scholar 

  25. Wang Z, Inoue Y, Hisatomi T, Ishikawa R, Wang Q, Takata T, Chen S, Shibata N, Ikuhara Y, Domen K. Nat Catal, 2020, 1: 756–763

    Article  Google Scholar 

  26. Li Y, Takata T, Cha D, Takanabe K, Minegishi T, Kubota J, Domen K. Adv Mater, 2013, 25: 125–131

    Article  CAS  PubMed  Google Scholar 

  27. Wang L, Dionigi F, Nguyen NT, Kirchgeorg R, Gliech M, Grigorescu S, Strasser P, Schmuki P. Chem Mater, 2015, 27: 2360–2366

    Article  CAS  Google Scholar 

  28. Hou J, Wang Z, Yang C, Cheng H, Jiao S, Zhu H. Energy Environ Sci, 2016, 6: 3322

    Article  Google Scholar 

  29. Pihosh Y, Minegishi T, Nandal V, Higashi T, Katayama M, Yamada T, Sasaki Y, Seki K, Suzuki Y, Nakabayashi M, Sugiyama M, Domen K. Energy Environ Sci, 2020, 13: 1519–1530

    Article  CAS  Google Scholar 

  30. Chen R, Zhen C, Yang Y, Sun X, Irvine JT, Wang L, Liu G, Cheng HM. Nano Energy, 2019, 59: 683–688

    Article  CAS  Google Scholar 

  31. Wang P, Ding C, Deng Y, Chi H, Zheng H, Liu L, Li H, Wu Y, Liu X, Shi J, Li C. ACS Catal, 2023, 13: 2647–2656

    Article  CAS  Google Scholar 

  32. Wang P, Fu P, Ma J, Gao Y, Li Z, Wang H, Fan F, Shi J, Li C. ACS Catal, 2021, 11: 12736–12744

    Article  CAS  Google Scholar 

  33. Liu G, Ye S, Yan P, Xiong F, Fu P, Wang Z, Chen Z, Shi J, Li C. Energy Environ Sci, 2016, 9: 1327–1334

    Article  CAS  Google Scholar 

  34. Li Y, Zhang L, Torres-Pardo A, González-Calbet JM, Ma Y, Oleynikov P, Terasaki O, Asahina S, Shima M, Cha D, Zhao L, Takanabe K, Kubota J, Domen K. Nat Commun, 2013, 4: 2566

    Article  PubMed  Google Scholar 

  35. Pei L, Xu Z, Shi Z, Zhu H, Yan S, Zou Z. J Mater Chem A, 2017, 5: 20439–20447

    Article  CAS  Google Scholar 

  36. Seo J, Takata T, Nakabayashi M, Hisatomi T, Shibata N, Minegishi T, Domen K. J Am Chem Soc, 2015, 137: 12780–12783

    Article  CAS  PubMed  Google Scholar 

  37. Kado Y, Hahn R, Lee CY, Schmuki P. Electrochem Commun, 2012, 17: 67–70

    Article  CAS  Google Scholar 

  38. Pei L, Lv B, Wang S, Yu Z, Yan S, Abe R, Zou Z. ACS Appl Energy Mater, 2018, 1: 4150–4157

    Article  CAS  Google Scholar 

  39. Zhen C, Wang L, Liu G, Lu GQM, Cheng HM. Chem Commun, 2013, 49: 3019

    Article  CAS  Google Scholar 

  40. Kawase Y, Higashi T, Obata K, Kishimoto F, Pihosh Y, Domen K, Takanabe K. Chem Mater, 2024, 36: 2390–2401

    Article  CAS  Google Scholar 

  41. Yang JW, Kwon HR, Ji SG, Kim J, Lee SA, Lee TH, Choi S, Cheon WS, Kim Y, Park J, Kim JY, Jang HW. Adv Funct Mater, 2024, 34: 2400806

    Article  Google Scholar 

  42. Kwon HR, Yang JW, Choi S, Cheon WS, Im IH, Kim Y, Park J, Lee GH, Jang HW. Adv Energy Mater, 2024, 14: 2303342

    Article  CAS  Google Scholar 

  43. Wang L, Zhang B, Rui Q. ACS Catal, 2018, 8: 10564–10572

    Article  CAS  Google Scholar 

  44. Pihosh Y, Nandal V, Minegishi T, Katayama M, Yamada T, Seki K, Sugiyama M, Domen K. ACS Energy Lett, 2020, 5: 2492–2497

    Article  CAS  Google Scholar 

  45. He Y, Thorne JE, Wu CH, Ma P, Du C, Dong Q, Guo J, Wang D. Chem, 2016, 1: 640–655

    Article  CAS  Google Scholar 

  46. Wang J, Ma A, Li Z, Jiang J, Feng J, Zou Z. Phys Chem Chem Phys, 2015, 17: 8166–8171

    Article  CAS  PubMed  Google Scholar 

  47. Wang J, Fang T, Zhang L, Feng J, Li Z, Zou Z. J Catal, 2014, 309: 291–299

    Article  CAS  Google Scholar 

  48. Cui L, Wang M, Wang YX. J Phys Soc Jpn, 2014, 83: 114707

    Article  Google Scholar 

  49. Fu J, Wang F, Xiao Y, Yao Y, Feng C, Chang L, Jiang CM, Kunzelmann VF, Wang ZM, Govorov AO, Sharp ID, Li Y. ACS Catal, 2020, 10: 10316–10324

    Article  CAS  Google Scholar 

  50. Guo X, Wang L, Tan Y. Nano Energy, 2015, 16: 320–328

    Article  CAS  Google Scholar 

  51. Xiao Y, Feng C, Fu J, Wang F, Li C, Kunzelmann VF, Jiang CM, Nakabayashi M, Shibata N, Sharp ID, Domen K, Li Y. Nat Catal, 2020, 3: 932–940

    Article  CAS  Google Scholar 

  52. Xiao Y, Fan Z, Nakabayashi M, Li Q, Zhou L, Wang Q, Li C, Shibata N, Domen K, Li Y. Nat Commun, 2022, 13: 7769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Su J, Guo L, Bao N, Grimes CA. Nano Lett, 2011, 11: 1928–1933

    Article  CAS  PubMed  Google Scholar 

  54. Rao PM, Cai L, Liu C, Cho IS, Lee CH, Weisse JM, Yang P, Zheng X. Nano Lett, 2014, 14: 1099–1105

    Article  CAS  PubMed  Google Scholar 

  55. Sivula K, Formal FL, Grätzel M. Chem Mater, 2009, 21: 2862–2867

    Article  CAS  Google Scholar 

  56. Li Y, Feng J, Li H, Wei X, Wang R, Zhou A. Int J Hydrogen Energy, 2016, 41: 4096–4105

    Article  CAS  Google Scholar 

  57. Zhong M, Hisatomi T, Sasaki Y, Suzuki S, Teshima K, Nakabayashi M, Shibata N, Nishiyama H, Katayama M, Yamada T, Domen K. Angew Chem Int Ed, 2017, 56: 4739–4743

    Article  CAS  Google Scholar 

  58. Wang S, Guan BY, Lou XWD. J Am Chem Soc, 2018, 140: 5037–5040

    Article  CAS  PubMed  Google Scholar 

  59. Li K, Han M, Chen R, Li SL, Xie SL, Mao C, Bu X, Cao XL, Dong LZ, Feng P, Lan YQ. Adv Mater, 2016, 28: 8906–8911

    Article  CAS  PubMed  Google Scholar 

  60. Li Y, Cooper JK, Liu W, Sutter-Fella CM, Amani M, Beeman JW, Javey A, Ager JW, Liu Y, Toma FM, Sharp ID. Nat Commun, 2016, 7: 12446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fu J, Fan Z, Nakabayashi M, Ju H, Pastukhova N, Xiao Y, Feng C, Shibata N, Domen K, Li Y. Nat Commun, 2022, 13: 729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pihosh Y, Nandal V, Shoji R, Bekarevich R, Higashi T, Nicolosi V, Matsuzaki H, Seki K, Domen K. ACS Energy Lett, 2023, 8: 2106–2112

    Article  CAS  Google Scholar 

  63. Li J, Wu N. Catal Sci Technol, 2015, 5: 1360–1384

    Article  CAS  Google Scholar 

  64. Sahoo P, Sharma A, Padhan S, Thangavel R. Int J Hydrogen Energy, 2020, 45: 22576–22588

    Article  CAS  Google Scholar 

  65. Esmaili H, Kowsari E, Ramakrishna S. J Mol Structure, 2021, 1230: 129856

    Article  CAS  Google Scholar 

  66. Macak J, Zlamal M, Krysa J, Schmuki P. Small, 2007, 3: 300–304

    Article  CAS  PubMed  Google Scholar 

  67. Wang M, Ioccozia J, Sun L, Lin C, Lin Z. Energy Environ Sci, 2014, 7: 2182–2202

    Article  CAS  Google Scholar 

  68. Cao L, Fan P, Vasudev AP, White JS, Yu Z, Cai W, Schuller JA, Fan S, Brongersma ML. Nano Lett, 2010, 10: 439–445

    Article  CAS  PubMed  Google Scholar 

  69. Wang L, Zhou X, Nguyen NT, Hwang I, Schmuki P. Adv Mater, 2016, 28: 2432–2438

    Article  CAS  PubMed  Google Scholar 

  70. Zhang B, Fan Z, Chen Y, Feng C, Li S, Li Y. Angew Chem Int Ed, 2023, 62: e202305123

    Article  CAS  Google Scholar 

  71. Feng C, Wang F, Liu Z, Nakabayashi M, Xiao Y, Zeng Q, Fu J, Wu Q, Cui C, Han Y, Shibata N, Domen K, Sharp ID, Li Y. Nat Commun, 2021, 12: 5980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang B, Yu S, Dai Y, Huang X, Chou L, Lu G, Dong G, Bi Y. Nat Commun, 2021, 12: 6969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim TW, Choi KS. Science, 2014, 343: 990–994

    Article  CAS  PubMed  Google Scholar 

  74. Li C, Wang T, Luo Z, Liu S, Gong J. Small, 2016, 12: 3415–3422

    Article  CAS  PubMed  Google Scholar 

  75. Yi SS, Wulan BR, Yan JM, Jiang Q. Adv Funct Mater, 2019, 29: 1801902

    Article  Google Scholar 

  76. Feng C, Faheem MB, Fu J, Xiao Y, Li C, Li Y. ACS Catal, 2020, 10: 4019–4047

    Article  CAS  Google Scholar 

  77. Lv L, Yang Z, Chen K, Wang C, Xiong Y. Adv Energy Mater, 2019, 9: 1803358

    Article  Google Scholar 

  78. Gao R, Yan D. Adv Energy Mater, 2020, 10: 1900954

    Article  CAS  Google Scholar 

  79. Feng C, She X, Xiao Y, Li Y. Angew Chem Int Ed, 2023, 62: e202218738

    Article  CAS  Google Scholar 

  80. Hunter BM, Thompson NB, Müller AM, Rossman GR, Hill MG, Winkler JR, Gray HB. Joule, 2018, 2: 747–763

    Article  CAS  Google Scholar 

  81. Beverskog B, Puigdomenech I. Corrosion Sci, 1996, 38: 2121–2135

    Article  CAS  Google Scholar 

  82. Thorarinsdottir AE, Veroneau SS, Nocera DG. Nat Commun, 2022, 13: 1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang X, Feng C, Fan Z, Zhang B, Xiao Y, Mavrič A, Pastukhova N, Valant M, Han YF, Li Y. Inorg Chem Front, 2023, 10: 3103–3111

    Article  CAS  Google Scholar 

  84. She X, Feng C, Liu D, Fan Z, Yang M, Li Y. Int J Hydrogen Energy, 2024, 59: 1297–1304

    Article  CAS  Google Scholar 

  85. Feng C, Li Y. Chin J Catal, 2024, DOI:https://doi.org/10.1016/S1872-2067(23)64648-0

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (22202031, 22279013) and the China National Postdoctoral Program for Innovative Talents (BX20220058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbo Li.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Fan, Z. & Li, Y. Engineering tantalum nitride for efficient photoelectrochemical water splitting. Sci. China Chem. (2024). https://doi.org/10.1007/s11426-024-2058-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11426-024-2058-9

Navigation