Skip to main content
Log in

Nickel-catalyzed carbonylative four-component 1,4-dicarbofunctionalization of 1,3-enynes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

An efficient Ni-catalyzed four-component 1,4-carbocarbonylation of 1,3-enynes with activated alkyl halides and arylboronic acids under atmospheric pressure of CO is presented. By tuning the electronic and steric effects of alkyl radicals, both electron-rich and electron-deficient 1,3-enynes were compatible with this cascade. This protocol features mild conditions, broad substrate scope, excellent functional group compatibility and facile gram-scale synthesis, providing a practical approach to the quaternary carbon center-containing allenyl ketones. Mechanistic study revealed that the acyl-NiII species plays an important role in both the coupling and the alkyl radical generation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ito M, Yamano Y, Sumiya S, Wada A. Pure Appl Chem, 1994, 66: 939–946

    Article  CAS  Google Scholar 

  2. Hoffmann-Röder A, Krause N. Angew Chem Int Ed, 2004, 43: 1196–1216

    Article  Google Scholar 

  3. Dzhemileva LU, D’yakonov VA, Makarov AA, Makarova EK, Andreev EN, Dzhemilev UM. J Nat Prod, 2020, 83: 2399–2409

    Article  CAS  PubMed  Google Scholar 

  4. Dudnik AS, Sromek AW, Rubina M, Kim JT, Kel’i AV, Gevorgyan V. J Am Chem Soc, 2008, 130: 1440–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fan X, Wang, Y, Qu Y, Xu H, He Y, Zhang X, Wang J. J Org Chem, 2011, 76: 982–985

    Article  CAS  PubMed  Google Scholar 

  6. Fan X, He Y, Zhang X. Chem Record, 2016, 16: 1635–1646

    Article  CAS  Google Scholar 

  7. Miao M, Xu H, Luo Y, Jin M, Chen Z, Xu J, Ren H. Synthesis, 2018, 50: 349–360

    Article  CAS  Google Scholar 

  8. Fragkiadakis M, Kidonakis M, Zorba L, Stratakis M. Adv Synth Catal, 2020, 362: 964–968

    Article  CAS  Google Scholar 

  9. Tang X, Ni H, Lu Y. Org Chem Front, 2021, 8: 4485–4489

    Article  CAS  Google Scholar 

  10. Xie R, Li R, Zhao Q, Zhao Y, Yao J, Miao M. J Org Chem, 2023, 88: 4778–4789

    Article  CAS  PubMed  Google Scholar 

  11. Hashmi ASK, Ruppert TL, Knöfel T, Bats JW. J Org Chem, 1997, 62: 7295–7304

    Article  CAS  PubMed  Google Scholar 

  12. Ma S, Liu J, Li S, Chen B, Cheng J, Kuang J, Liu Y, Wan B, Wang Y, Ye J, Yu Q, Yuan W, Yu S. Adv Synth Catal, 2011, 353: 1005–1017

    Article  CAS  Google Scholar 

  13. Wu P, Ma S. Org Lett, 2021, 23: 2533–2537

    Article  CAS  PubMed  Google Scholar 

  14. Schwier T, Sromek AW, Yap DML, Chernyak D, Gevorgyan V. J Am Chem Soc, 2007, 129: 9868–9878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim HY, Li JY, Oh K. J Org Chem, 2012, 77: 11132–11145

    Article  CAS  PubMed  Google Scholar 

  16. Yao Q, Liao Y, Lin L, Lin X, Ji J, Liu X, Feng X. Angew Chem Int Ed, 2016, 55: 1859–1863

    Article  CAS  Google Scholar 

  17. Alonso JM, Almendros P. Adv Synth Catal, 2023, 365: 1332–1384

    Article  CAS  Google Scholar 

  18. Liu W, Liu C, Wang M, Kong W. ACS Catal, 2022, 12: 10207–10221

    Article  CAS  Google Scholar 

  19. Chen L, Lin C, Zhang S, Zhang X, Zhang J, Xing L, Guo Y, Feng J, Gao J, Du D. ACS Catal, 2021, 11: 13363–13373

    Article  CAS  Google Scholar 

  20. Cai Y, Chen J, Huang Y. Org Lett, 2021, 23: 9251–9255

    Article  CAS  PubMed  Google Scholar 

  21. Chen L, Wang J, Lin C, Zhu Y, Du D. Org Lett, 2022, 24: 7047–7051

    Article  CAS  PubMed  Google Scholar 

  22. Liu YQ, Li QZ, Kou XX, Zeng R, Qi T, Zhang X, Peng C, Han B, Li JL. J Org Chem, 2022, 87: 5229–5241

    Article  CAS  PubMed  Google Scholar 

  23. Ryu I, Sonoda N, Curran DP. Chem Rev, 1996, 96: 177–194

    Article  CAS  PubMed  Google Scholar 

  24. Wu XF, Neumann H, Beller M. Chem Soc Rev, 2011, 40: 4986–5009

    Article  CAS  PubMed  Google Scholar 

  25. Peng JB, Geng HQ, Wu XF. Chem, 2019, 5: 526–552

    Article  CAS  Google Scholar 

  26. Zhao S, Mankad NP. Catal Sci Technol, 2019, 9: 3603–3613

    Article  CAS  Google Scholar 

  27. Cai B, Cheo HW, Liu T, Wu J. Angew Chem Int Ed, 2021, 60: 18950–18980

    Article  CAS  Google Scholar 

  28. Fujimori S, Inoue S. J Am Chem Soc, 2022, 144: 2034–2050

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y, Chen YH, Yi H, Lei A. ACS Catal, 2022, 12: 7470–7485

    Article  CAS  Google Scholar 

  30. Zhong Y, Han W. Chem Commun, 2014, 50: 3874–3877

    Article  CAS  Google Scholar 

  31. Pye DR, Cheng LJ, Mankad NP. Chem Sci, 2017, 8: 4750–4755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cheng R, Zhao HY, Zhang S, Zhang X. ACS Catal, 2020, 10: 36–42

    Article  CAS  Google Scholar 

  33. Roslin S, Odell LR. Chem Commun, 2017, 53: 6895–6898

    Article  CAS  Google Scholar 

  34. Bloome KS, Alexanian EJ. J Am Chem Soc, 2010, 132: 12823–12825

    Article  CAS  PubMed  Google Scholar 

  35. Lu B, Cheng Y, Chen LY, Chen JR, Xiao WJ. ACS Catal, 2019, 9: 8159–8164

    Article  CAS  Google Scholar 

  36. Yin Z, Zhang Z, Soulé JF, Dixneuf PH, Wu XF. J Catal, 2019, 372: 272–276

    Article  CAS  Google Scholar 

  37. Cheng LJ, Mankad NP. J Am Chem Soc, 2020, 142: 80–84

    Article  CAS  PubMed  Google Scholar 

  38. Zhao F, Gu X, Franke R, Wu X. Angew Chem Int Ed, 2022, 61: e202214812

    Article  CAS  Google Scholar 

  39. Yuan Y, Zhang Y, Li W, Zhao Y, Wu X. Angew Chem Int Ed, 2023, 62: e202309993

    Article  CAS  Google Scholar 

  40. Lu B, Zhang Z, Jiang M, Liang D, He Z, Bao F, Xiao W, Chen J. Angew Chem Int Ed, 2023, 62: e202309460

    Article  CAS  Google Scholar 

  41. El Chami K, Liu Y, Belahouane MA, Ma Y, Lagueux-Tremblay P, Arndtsen BA. Angew Chem Int Ed, 2023, 62: e202213297

    Article  CAS  Google Scholar 

  42. Tao JQ, Liu S, Zhang TY, Xin H, Yang X, Duan XH, Guo LN. Chin Chem Lett, 2024, 35: 109263–109268

    Article  CAS  Google Scholar 

  43. Fusano A, Sumino S, Nishitani S, Inouye T, Morimoto K, Fukuyama T, Ryu I. Chem Eur J, 2012, 18: 9415–9422

    Article  CAS  PubMed  Google Scholar 

  44. Wu F, Yuan Y, Schünemann C, Kamer PCJ, Wu X. Angew Chem Int Ed, 2020, 59: 10451–10455

    Article  CAS  Google Scholar 

  45. Yuan Y, Wu F, Xu J, Wu X. Angew Chem Int Ed, 2020, 59: 17055–17061

    Article  CAS  Google Scholar 

  46. Wu F, Yuan Y, Wu X. Angew Chem Int Ed, 2021, 60: 25787–25792

    Article  CAS  Google Scholar 

  47. Wu FP, Yang Y, Fuentes DP, Wu XF. Chem, 2022, 8: 1982–1992

    Article  CAS  Google Scholar 

  48. Wang Y, Wang P, Neumann H, Beller M. ACS Catal, 2023, 13: 6744–6753

    Article  CAS  Google Scholar 

  49. Zhou M, Zhao HY, Zhang S, Zhang Y, Zhang X. J Am Chem Soc, 2020, 142: 18191–18199

    Article  CAS  PubMed  Google Scholar 

  50. Rao N, Li YZ, Luo YC, Zhang Y, Zhang X. ACS Catal, 2023, 13: 4111–4119

    Article  CAS  Google Scholar 

  51. Zhao HY, Gao X, Zhang S, Zhang X. Org Lett, 2019, 21: 1031–1036

    Article  CAS  PubMed  Google Scholar 

  52. Kuai C, Teng B, Wu X. Angew Chem Int Ed, 2024, 63: e202318257

    Article  CAS  Google Scholar 

  53. Shan QC, Zhao Y, Wang ST, Liu HF, Duan XH, Guo LN. ACS Catal, 2024, 14: 2144–2150

    Article  CAS  Google Scholar 

  54. Parsaee F, Senarathna MC, Kannangara PB, Alexander SN, Arche PDE, Welin ER. Nat Rev Chem, 2021, 5: 486–499

    Article  CAS  PubMed  Google Scholar 

  55. Yuan M, Song Z, Badir SO, Molander GA, Gutierrez O. J Am Chem Soc, 2020, 142: 7225–7234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang W, Keess S, Molander GA. J Am Chem Soc, 2022, 144: 12961–12969

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22171220, 21971201) and the Fundamental Research Funds of the Central Universities (xtr072022003). We also thank Mr Zhang, Miss Feng and Miss Bai at the Instrument Analysis Center of Xi’an Jiaotong University for their assistance with NMR and HRMS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Na Guo.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Shan, QC., Xin, H. et al. Nickel-catalyzed carbonylative four-component 1,4-dicarbofunctionalization of 1,3-enynes. Sci. China Chem. (2024). https://doi.org/10.1007/s11426-024-1973-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11426-024-1973-2

Navigation