Skip to main content
Log in

Surficial modification enabling planar Al growth toward dendrite-free metal anodes for rechargeable aluminum batteries

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Al metal possesses ultrahigh theoretical volumetric capacity of 8,040 mAh cm−3, and gravimetric capacity of 2,980 mAh g−1, and thus is highly attractive for electrochemical energy storage. However, it suffers from several issues, such as the dendrite formation, during Al stripping–deposition cycling, which has been verified to account for the short circuit and limited cyclic performance. Herein, we use a facile and applicable method to in-situ reconstruct the Al anode surface with F-Al-O chemical bonds, which could preferentially induce the planar growth of Al along the interface plane, thus leading to the dendrite-free morphology evolution during the cycling. Benefiting from F-Al-O chemical bonds on the surface of Al anodes, long lifespan of symmetric cells can be realized even under 1 mA cm−2 and 1 mAh cm−2. Coupling the F-Al anode with graphite-based cathodes, high-voltage dual-ion Al metal batteries can be achieved with long-term cycle stability up to 1,200 cycles (at 0.5 mA cm−2), surpassing the counterparts using pristine Al metal anode. Furthermore, the effectiveness of this surficial modification strategy is also elucidated with the aid of theoretical calculation. This work provides novel insights on low-cost and facile strategies against the Al dendrite growth in aluminum batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li M, Lu J. Science, 2020, 367: 979–980

    Article  CAS  PubMed  Google Scholar 

  2. Li Y, Wu F, Li Y, Liu M, Feng X, Bai Y, Wu C. Chem Soc Rev, 2022, 51: 4484–4536

    Article  CAS  PubMed  Google Scholar 

  3. Gent WE, Busse GM, House KZ. Nat Energy, 2022, 7: 1132–1143

    Article  CAS  Google Scholar 

  4. Wang F, Wu X, Li C, Zhu Y, Fu L, Wu Y, Liu X. Energy Environ Sci, 2016, 9: 3570–3611

    Article  CAS  Google Scholar 

  5. Kim H, Jeong G, Kim YU, Kim JH, Park CM, Sohn HJ. Chem Soc Rev, 2013, 42: 9011–9034

    Article  CAS  PubMed  Google Scholar 

  6. Yang J, Zhao R, Wang Y, Hu Z, Wang Y, Zhang A, Wu C, Bai Y. Adv Funct Mater, 2023, 33: 2213510

    Article  CAS  Google Scholar 

  7. Wu F, Yang H, Bai Y, Wu C. J Energy Chem, 2020, 51: 416–417

    Article  Google Scholar 

  8. Jiang M, Fu C, Meng P, Ren J, Wang J, Bu J, Dong A, Zhang J, Xiao W, Sun B. Adv Mater, 2022, 34: 2102026

    Article  CAS  Google Scholar 

  9. Wei TT, Peng P, Qi SY, Zhu YR, Yi TF. J Energy Chem, 2021, 57: 169–188

    Article  CAS  Google Scholar 

  10. Kim DJ, Yoo DJ, Otley MT, Prokofjevs A, Pezzato C, Owczarek M, Lee SJ, Choi JW, Stoddart JF. Nat Energy, 2019, 4: 51–59

    Article  CAS  Google Scholar 

  11. Zheng L, Yang H, Bai Y, Wu C. J Energy Chem, 2021, 60: 229–232

    Article  CAS  Google Scholar 

  12. Ng KL, Amrithraj B, Azimi G. Joule, 2022, 6: 134–170

    Article  CAS  Google Scholar 

  13. Tu J, Song WL, Lei H, Yu Z, Chen LL, Wang M, Jiao S. Chem Rev, 2021, 121: 4903–4961

    Article  CAS  PubMed  Google Scholar 

  14. Das SK, Mahapatra S, Lahan H. J Mater Chem A, 2017, 5: 6347–6367

    Article  CAS  Google Scholar 

  15. Wang H, Gu S, Bai Y, Chen S, Wu F, Wu C. ACS Appl Mater Interfaces, 2016, 8: 27444–27448

    Article  CAS  PubMed  Google Scholar 

  16. Go H, Raj MR, Tak Y, Lee G. Electroanalysis, 2022, 34: 1308–1317

    Article  CAS  Google Scholar 

  17. Chen H, Xu H, Zheng B, Wang S, Huang T, Guo F, Gao W, Gao C. ACS Appl Mater Interfaces, 2017, 9: 22628–22634

    Article  CAS  PubMed  Google Scholar 

  18. Choi S, Go H, Lee G, Tak Y. Phys Chem Chem Phys, 2017, 19: 8653–8656

    Article  CAS  PubMed  Google Scholar 

  19. Wu F, Zhu N, Bai Y, Gao Y, Wu C. Green Energy Environ, 2018, 3: 71–77

    Article  Google Scholar 

  20. Shen X, Sun T, Yang L, Krasnoslobodtsev A, Sabirianov R, Sealy M, Mei WN, Wu Z, Tan L. Nat Commun, 2021, 12: 820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin MC, Gong M, Lu B, Wu Y, Wang DY, Guan M, Angell M, Chen C, Yang J, Hwang BJ, Dai H. Nature, 2015, 520: 324–328

    Article  CAS  Google Scholar 

  22. Wu F, Yang H, Bai Y, Wu C. Adv Mater, 2019, 31: 1806510

    Article  Google Scholar 

  23. Yang H, Li H, Li J, Sun Z, He K, Cheng HM, Li F. Angew Chem Int Ed, 2019, 58: 11978–11996

    Article  CAS  Google Scholar 

  24. Guo F, Huang Z, Wang M, Song WL, Lv A, Han X, Tu J, Jiao S. Energy Storage Mater, 2020, 33: 250–257

    Article  Google Scholar 

  25. Tu J, Wang W, Lei H, Wang M, Chang C, Jiao S. Small, 2022, 18: 2201362

    Article  CAS  Google Scholar 

  26. Huang Z, Du X, Ma M, Wang S, Xie Y, Meng Y, You W, Xiong L. ChemSusChem, 2023, 16: e202202358

    Article  CAS  PubMed  Google Scholar 

  27. Yang H, Wu F, Bai Y, Wu C. J Energy Chem, 2020, 45: 98–102

    Article  Google Scholar 

  28. Cheng XB, Zhang R, Zhao CZ, Zhang Q. Chem Rev, 2017, 117: 10403–10473

    Article  CAS  PubMed  Google Scholar 

  29. Zachman MJ, Tu Z, Choudhury S, Archer LA, Kourkoutis LF. Nature, 2018, 560: 345–349

    Article  CAS  PubMed  Google Scholar 

  30. Gao X, Zhou YN, Han D, Zhou J, Zhou D, Tang W, Goodenough JB. Joule, 2020, 4: 1864–1879

    Article  CAS  Google Scholar 

  31. She DM, Song WL, He J, Li N, Chen H, Jiao S, Fang D. J Electrochem Soc, 2020, 167: 130530

    Article  CAS  Google Scholar 

  32. Pang Q, Meng J, Gupta S, Hong X, Kwok CY, Zhao J, Jin Y, Xu L, Karahan O, Wang Z, Toll S, Mai L, Nazar LF, Balasubramanian M, Narayanan B, Sadoway DR. Nature, 2022, 608: 704–711

    Article  CAS  PubMed  Google Scholar 

  33. Ran Q, Zeng SP, Zhu MH, Wan WB, Meng H, Shi H, Wen Z, Lang X-, Jiang Q. Adv Funct Mater, 2023, 33: 2211271

    Article  CAS  Google Scholar 

  34. Long Y, Li H, Ye M, Chen Z, Wang Z, Tao Y, Weng Z, Qiao SZ, Yang QH. Energy Storage Mater, 2021, 34: 194–202

    Article  Google Scholar 

  35. Yoon J, Moon S, Ha S, Lim HK, Jin HJ, Yun YS. J Energy Chem, 2022, 74: 121–127

    Article  CAS  Google Scholar 

  36. Jiao H, Jiao S, Li S, Song WL, Chen H, Tu J, Wang M, Tian D, Fang D. Chem Eng J, 2020, 391: 123594

    Article  CAS  Google Scholar 

  37. Jiao H, Jiao S, Song WL, Xiao X, She D, Li N, Chen H, Tu J, Wang M, Fang D. Nano Res, 2021, 14: 646–653

    Article  CAS  Google Scholar 

  38. Li J, Hui KS, Ji S, Zha C, Yuan C, Wu S, Bin F, Fan X, Chen F, Shao Z, Hui KN. Carbon Energy, 2022, 4: 155–169

    Article  CAS  Google Scholar 

  39. Hu B, Han K, Han C, Geng L, Li M, Hu P, Wang X. Coatings, 2022, 12: 661

    Article  CAS  Google Scholar 

  40. Xu C, Diemant T, Liu X, Passerini S. Adv Funct Mater, 2023, 33: 2214405

    Article  CAS  Google Scholar 

  41. Meng Y, Wang J, Wang M, Peng Q, Xie Z, Zhu Z, Liu Z, Wang W, Zhang K, Liu H, Ma Y, Li Z, Chen W. Adv Energy Mater, 2023, 13: 2301322

    Article  CAS  Google Scholar 

  42. Meng Y, Wang M, Li K, Zhu Z, Liu Z, Jiang T, Zheng X, Zhang K, Wang W, Peng Q, Xie Z, Wang Y, Chen W. Nano Lett, 2023, 23: 2295–2303

    Article  CAS  PubMed  Google Scholar 

  43. Zheng J, Bock DC, Tang T, Zhao Q, Yin J, Tallman KR, Wheeler G, Liu X, Deng Y, Jin S, Marschilok AC, Takeuchi ES, Takeuchi KJ, Archer LA. Nat Energy, 2021, 6: 398–406

    Article  CAS  Google Scholar 

  44. Matsumoto K, Inoue K, Nakahara K, Yuge R, Noguchi T, Utsugi K. J Power Sources, 2013, 231: 234–238

    Article  CAS  Google Scholar 

  45. Wen X, Zhang J, Luo H, Shi J, Tsay C, Jiang H, Lin YH, Schroeder MA, Xu K, Guo J. J Phys Chem Lett, 2021, 12: 5903–5908

    Article  CAS  PubMed  Google Scholar 

  46. Brown S, Bergeron F, Loquai S, Cavarroc M, Knittel S, Martinu L, Klemberg-Sapieha JE. Surf Coatings Tech, 2022, 439: 128283

    Article  CAS  Google Scholar 

  47. Yang J, Zhao R, Wang Y, Bai Y, Wu C. Energy Mater Adv, 2022, 2022: 9809626

    Google Scholar 

  48. Yang Q, Jiang N, Shao Y, Zhang Y, Zhao X, Zeng Y, Qiu J. Sci China Chem, 2022, 65: 2351–2368

    Article  CAS  Google Scholar 

  49. Zhou L, Zhao M, Chen X, Zhou J, Wu M, Wu N. Sci China Chem, 2022, 65: 1817–1821

    Article  CAS  Google Scholar 

  50. Zhu Z, Jiang T, Ali M, Meng Y, Jin Y, Cui Y, Chen W. Chem Rev, 2022, 122: 16610–16751

    Article  CAS  PubMed  Google Scholar 

  51. Meng J, Zhu L, Haruna AB, Ozoemena KI, Pang Q. Sci China Chem, 2021, 64: 1888–1907

    Article  CAS  Google Scholar 

  52. Bitenc J, Košir U, Vizintin A, Lindahl N, Krajnc A, Pirnat K, Jerman I, Dominko R. Energy Mater Adv, 2021, 2021: 9793209

    Article  Google Scholar 

  53. Li Y, Zheng Y, Guo K, Zhao J, Li C. Energy Mater Adv, 2022, 2022: 9840837

    Google Scholar 

  54. Tang Z, Chen W, Lyu Z, Chen Q. Energy Mater Adv, 2022, 2022: 9765710

    Google Scholar 

  55. Gu S, Haoyi Y, Yuan Y, Gao Y, Zhu N, Wu F, Bai Y, Wu C. Energy Mater Adv, 2022, 2022: 9790472

    Article  Google Scholar 

  56. Fan X, Tebyetekerwa M, Wu Y, Gaddam RR, Zhao XS. Energy Mater Adv, 2022, 2022: 9846797

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22075028), and the Beijing Institute of Technology Research Fund Program for Young Scholars (XSQD-202108005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Li, Ying Bai or Chuan Wu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Material for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Li, Y., Long, B. et al. Surficial modification enabling planar Al growth toward dendrite-free metal anodes for rechargeable aluminum batteries. Sci. China Chem. 67, 1341–1351 (2024). https://doi.org/10.1007/s11426-023-1940-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1940-1

Navigation