Skip to main content
Log in

Narrowband blue emitter based on fused nitrogen/carbonyl combination with external quantum efficiency approaching 30%

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters can enable narrowband emission with high color purity and electroluminescence efficiency. Nitrogen/carbonyl (N/C=O) system is receiving increasing attention while the nitrogen/ boron (N/B) system has been widely studied. Donor decoration is an effective approach for N/B type MR-TADF system but always leads to broadening and red-shifting of the emission band in N/C=O MR-TADF system. We attribute these unfavorable phenomena to the formation of intramolecular charge transfer between the MR-core and peripheral donors. To address this issue, we have developed a new strategy by decorating DMQAO (a fused N/C=O MR-core) with a triazine acceptor and a neutral terphenyl group to construct MTDMQAO and MBDMQAO, respectively. The introduction of the triazine acceptor not only realizes efficient narrowband emission in MTDMQAO, but also accelerates the reverse intersystem crossing process through enhanced spin-orbital coupling. As a result, MTDMQAO exhibits a significantly higher external quantum efficiency of 29.4% compared to the referent emitters, validating the rationality of our derivation strategy. This study highlights the potential of the N/C=O system for MR-TADF emitters and provides important insights for understanding the difference between N/B and N/C=O systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Im Y, Kim M, Cho YJ, Seo JA, Yook KS, Lee JY. Chem Mater, 2017, 29: 1946–1963

    Article  CAS  Google Scholar 

  2. Wang Q, Wang JY, Zeng H, Zhang LY, Chen ZN. Sci China Chem, 2022, 65: 1559–1568

    Article  CAS  Google Scholar 

  3. Chen S, Wang XD, Zhuo MP, Lv Q, Liu JF, Liao LS. Sci China Chem, 2022, 65: 740–745

    Article  CAS  Google Scholar 

  4. Qu YK, Zheng Q, Fan J, Liao LS, Jiang ZQ. Acc Mater Res, 2021, 2: 1261–1271

    Article  CAS  Google Scholar 

  5. Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492: 234–238

    Article  CAS  PubMed  Google Scholar 

  6. Yang S, Qu Y, Liao L, Jiang Z, Lee S. Adv Mater, 2022, 34: 2104125

    Article  CAS  Google Scholar 

  7. Xue J, Xu J, Ren J, Liang Q, Ou Q, Wang R, Shuai Z, Qiao J. Sci China Chem, 2021, 64: 1786–1795

    Article  CAS  Google Scholar 

  8. Li X, Shen S, Zhang C, Liu M, Lu J, Zhu L. Sci China Chem, 2021, 64: 534–546

    Article  CAS  Google Scholar 

  9. Tao Y, Yuan K, Chen T, Xu P, Li H, Chen R, Zheng C, Zhang L, Huang W. Adv Mater, 2014, 26: 7931–7958

    Article  CAS  PubMed  Google Scholar 

  10. Zhang YP, Song SQ, Mao MX, Li CH, Zheng YX, Zuo JL. Sci China Chem, 2022, 65: 1347–1355

    Article  CAS  Google Scholar 

  11. Xie Y, Hua L, Wang Z, Liu Y, Ying S, Liu Y, Ren Z, Yan S. Sci China Chem, 2023, doi: https://doi.org/10.1007/s11426-022-1447-4

    Google Scholar 

  12. Guo J, Li XL, Nie H, Luo W, Hu R, Qin A, Zhao Z, Su SJ, Tang BZ. Chem Mater, 2017, 29: 3623–3631

    Article  CAS  Google Scholar 

  13. Hatakeyama T, Shiren K, Nakajima K, Nomura S, Nakatsuka S, Kinoshita K, Ni J, Ono Y, Ikuta T. Adv Mater, 2016, 28: 2777–2781

    Article  CAS  PubMed  Google Scholar 

  14. Kondo Y, Yoshiura K, Kitera S, Nishi H, Oda S, Gotoh H, Sasada Y, Yanai M, Hatakeyama T. Nat Photonics, 2019, 13: 678–682

    Article  CAS  Google Scholar 

  15. Wu X, Su BK, Chen DG, Liu D, Wu CC, Huang ZX, Lin TC, Wu CH, Zhu M, Li EY, Hung WY, Zhu W, Chou PT. Nat Photon, 2021, 15: 780–786

    Article  CAS  Google Scholar 

  16. Hu YX, Miao J, Hua T, Huang Z, Qi Y, Zou Y, Qiu Y, Xia H, Liu H, Cao X, Yang C. Nat Photon, 2022, 16: 803–810

    Article  CAS  Google Scholar 

  17. Chen F, Zhao L, Wang X, Yang Q, Li W, Tian H, Shao S, Wang L, Jing X, Wang F. Sci China Chem, 2021, 64: 547–551

    Article  Google Scholar 

  18. Ning W, Wang H, Gong S, Zhong C, Yang C. Sci China Chem, 2022, 65: 1715–1719

    Article  CAS  Google Scholar 

  19. Yang M, Park IS, Yasuda T. J Am Chem Soc, 2020, 142: 19468–19472

    Article  CAS  PubMed  Google Scholar 

  20. Yuan Y, Tang X, Du X, Hu Y, Yu Y, Jiang Z, Liao L, Lee S. Adv Opt Mater, 2019, 7: 1801536

    Article  Google Scholar 

  21. Qiu X, Tian G, Lin C, Pan Y, Ye X, Wang B, Ma D, Hu D, Luo Y, Ma Y. Adv Opt Mater, 2020, 9: 2001845

    Article  Google Scholar 

  22. Zou SN, Peng CC, Yang SY, Qu YK, Yu YJ, Chen X, Jiang ZQ, Liao LS. Org Lett, 2021, 23: 958–962

    Article  CAS  PubMed  Google Scholar 

  23. Yang SY, Zou SN, Kong FC, Liao XJ, Qu YK, Feng ZQ, Zheng YX, Jiang ZQ, Liao LS. Chem Commun, 2021, 57: 11041–11044

    Article  CAS  Google Scholar 

  24. Liu JF, Zou SN, Chen X, Yang SY, Yu YJ, Fung MK, Jiang ZQ, Liao LS. Mater Chem Front, 2022, 6: 966–972

    Article  CAS  Google Scholar 

  25. Yu YJ, Zou SN, Peng CC, Feng ZQ, Qu YK, Yang SY, Jiang ZQ, Liao LS. J Mater Chem C, 2022, 10: 4941–4946

    Article  CAS  Google Scholar 

  26. Cao C, Tan J, Zhu Z, Lin J, Tan H, Chen H, Yuan Y, Tse M, Chen W, Lee C. Angew Chem, 2023, 135: e202215226

    Article  Google Scholar 

  27. Min H, Park IS, Yasuda T. Angew Chem Int Ed, 2021, 60: 7643–7648

    Article  CAS  Google Scholar 

  28. Wu S, Li W, Yoshida K, Hall D, Madayanad Suresh S, Sayner T, Gong J, Beljonne D, Olivier Y, Samuel IDW, Zysman-Colman E. ACS Appl Mater Interfaces, 2022, 14: 22341–22352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu S, Kumar Gupta A, Yoshida K, Gong J, Hall D, Cordes DB, Slawin AMZ, Samuel IDW, Zysman-Colman E. Angew Chem Int Ed, 2022, 61: e202213697

    Article  CAS  Google Scholar 

  30. Huang F, Wang K, Shi YZ, Fan XC, Zhang X, Yu J, Lee CS, Zhang XH. ACS Appl Mater Interfaces, 2021, 13: 36089–36097

    Article  CAS  PubMed  Google Scholar 

  31. Wang Q, Xu Y, Yang T, Xue J, Wang Y. Adv Mater, 2023, 35

  32. Zhang Y, Zhang D, Wei J, Hong X, Lu Y, Hu D, Li G, Liu Z, Chen Y, Duan L. Angew Chem Int Ed, 2020, 59: 17499–17503

    Article  CAS  Google Scholar 

  33. Liu Y, Xiao X, Huang Z, Yang D, Ma D, Liu J, Lei B, Bin Z, You J. Angew Chem Int Ed, 2022, 61: e202210210

    Article  CAS  Google Scholar 

  34. Chen X, Tsuchiya Y, Ishikawa Y, Zhong C, Adachi C, Brédas J. Adv Mater, 2017, 29: 1702767

    Article  Google Scholar 

  35. Zhang Q, Kuwabara H, Potscavage Jr. WJ, Huang S, Hatae Y, Shibata T, Adachi C. J Am Chem Soc, 2014, 136: 18070–18081

    Article  CAS  PubMed  Google Scholar 

  36. Qu Y, Zhou D, Kong F, Zheng Q, Tang X, Zhu Y, Huang C, Feng Z, Fan J, Adachi C, Liao L, Jiang Z. Angew Chem Int Ed, 2022, 61: e202201886

    Article  CAS  Google Scholar 

  37. Field JE, Hill TJ, Venkataraman D. J Org Chem, 2003, 68: 6071–6078

    Article  CAS  PubMed  Google Scholar 

  38. Cai Z, Wu X, Liu H, Guo J, Yang D, Ma D, Zhao Z, Tang BZ. Angew Chem Int Ed, 2021, 60: 23635–23640

    Article  CAS  Google Scholar 

  39. Xu Y, Li C, Li Z, Wang J, Xue J, Wang Q, Cai X, Wang Y. CCS Chem, 2022, 4: 2065–2079

    Article  CAS  Google Scholar 

  40. Cornil J, Beljonne D, Calbert JP, Brédas JL. Adv Mater, 2001, 13: 1053–1067

    Article  CAS  Google Scholar 

  41. Yu Y, Hu Y, Yang S, Luo W, Yuan Y, Peng C, Liu J, Khan A, Jiang Z, Liao L. Angew Chem Int Ed, 2020, 59: 21578–21584

    Article  CAS  Google Scholar 

  42. Tang X, Cui LS, Li HC, Gillett AJ, Auras F, Qu YK, Zhong C, Jones STE, Jiang ZQ, Friend RH, Liao LS. Nat Mater, 2020, 19: 1332–1338

    Article  CAS  PubMed  Google Scholar 

  43. Zhang YL, Yang SY, Feng ZQ, Qu YK, Zhou DY, Zhong C, Liao LS, Jiang ZQ. Sci China Chem, 2022, 65: 2219–2230

    CAS  Google Scholar 

  44. Zeng C, Zheng W, Xu H, Osella S, Ma W, Wang HI, Qiu Z, Otake K, Ren W, Cheng H, Müllen K, Bonn M, Gu C, Ma Y. Angew Chem Int Ed, 2022, 61: e202115389

    Article  CAS  Google Scholar 

  45. Cui L, Nomura H, Geng Y, Kim JU, Nakanotani H, Adachi C. Angew Chem Int Ed, 2017, 56: 1571–1575

    Article  CAS  Google Scholar 

  46. Khan A, Tang X, Zhong C, Wang Q, Yang S, Kong F, Yuan S, Sandanayaka ASD, Adachi C, Jiang Z, Liao L. Adv Funct Mater, 2021, 31: 2009488

    Article  CAS  Google Scholar 

  47. Cai S, Tong GSM, Du L, So GK, Hung F, Lam T, Cheng G, Xiao H, Chang X, Xu Z, Che C. Angew Chem Int Ed, 2022, 61: e202213392

    Article  CAS  Google Scholar 

  48. Zhao W, He Z, Tang BZ. Nat Rev Mater, 2020, 5: 869–885

    Article  CAS  Google Scholar 

  49. Bryce MR. Sci China Chem, 2023, 66: 1–3

    Article  CAS  Google Scholar 

  50. Shi Y, Wang K, Tsuchiya Y, Liu W, Komino T, Fan X, Sun D, Dai G, Chen J, Zhang M, Zheng C, Xiong S, Ou X, Yu J, Jie J, Lee CS, Adachi C, Zhang X. Mater Horiz, 2020, 7: 2734–2740

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51873139, 22175124, 62175171, 61961160731), the Natural Science Foundation of Jiangsu Province of China (BK20220057), and the Suzhou Science and Technology Plan Project (SYG202010). This work was also supported by the Suzhou Key Laboratory of Functional Nano & Soft Materials, the Collaborative Innovation Center of Suzhou Nano Science & Technology, the 111 Project, and the Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang-Sheng Liao or Zuo-Quan Jiang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Cai, JH., Yu, YJ. et al. Narrowband blue emitter based on fused nitrogen/carbonyl combination with external quantum efficiency approaching 30%. Sci. China Chem. 67, 351–359 (2024). https://doi.org/10.1007/s11426-023-1669-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1669-9

Navigation