Skip to main content
Log in

Copper(I) complexes with planar chirality realize efficient circularly polarized electroluminescence

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Chiral organometallic emitters hold great promise in potential and practical applications of circularly polarized organic light-emitting diodes (CP-OLEDs). However, developing luminescent earth-abundant organometallic complexes concurrently exhibiting circularly polarized luminescence (CPL) and high quantum efficiency remains a formidable challenge. In this study, we introduced a typical planar chiral skeleton of a [2.2]paracyclophane moiety into earth-abundant copper(I) complexes with the goal of realizing efficient CPL and thermally activated delayed fluorescence (TADF) simultaneously. Two pairs of proof-of-the-concept copper(I) enantiomers, Rp/Sp-MAC*-Cu-CzP and Rp/Sp-MAC*-Cu-CNCzP, were developed using planar chiral [2.2] paracyclophane-based donor ligands in a carbene-metal-amide (CMA) motif. Both panels of enantiomers not only exhibited significant mirror-image CPL signals but also displayed distinct TADF nature with fast reverse intersystem crossing rates of up to 108 s−1. The resultant OLEDs based on the MAC*-Cu-CzP enantiomers manifested efficient circularly polarized electroluminescence with excellent external quantum efficiencies of 13.2% and ultraslow efficiency roll-off (7.7% at 10,000 nits). This article not only demonstrates one of the best performances for CP-OLEDs based on earth-abundant organometallic complexes but also represents the first example of CP-OLEDs from CMA complexes to our knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Han J, Guo S, Lu H, Liu S, Zhao Q, Huang W. Adv Opt Mater, 2018, 6: 1800538

    Article  Google Scholar 

  2. Brandt JR, Salerno F, Fuchter MJ. Nat Rev Chem, 2017, 1: 0045

    Article  CAS  Google Scholar 

  3. Zhang DW, Li M, Chen CF. Chem Soc Rev, 2020, 49: 1331–1343

    Article  CAS  PubMed  Google Scholar 

  4. Parker D, Fradgley JD, Wong KL. Chem Soc Rev, 2021, 50: 8193–8213

    Article  CAS  PubMed  Google Scholar 

  5. Gong ZL, Zhu X, Zhou Z, Zhang SW, Yang D, Zhao B, Zhang YP, Deng J, Cheng Y, Zheng YX, Zang SQ, Kuang H, Duan P, Yuan M, Chen CF, Zhao YS, Zhong YW, Tang BZ, Liu M. Sci China Chem, 2021, 64: 2060–2104

    Article  CAS  Google Scholar 

  6. Zinna F, Di Bari L. Chirality, 2015, 27: 1–13

    Article  CAS  PubMed  Google Scholar 

  7. Crassous J. Chem Soc Rev, 2009, 38: 830–845

    Article  CAS  PubMed  Google Scholar 

  8. Bizzarri C, Spuling E, Knoll DM, Volz D, Bräse S. Coord Chem Rev, 2018, 373: 49–82

    Article  CAS  Google Scholar 

  9. OuYang J, Crassous J. Coord Chem Rev, 2018, 376: 533–547

    Article  CAS  Google Scholar 

  10. Lu G, Wu Z, Wu R, Cao X, Zhou L, Zheng Y, Yang C. Adv Funct Mater, 2021, 31: 2102898

    Article  CAS  Google Scholar 

  11. Yan Z, Luo X, Liu W, Wu Z, Liang X, Liao K, Wang Y, Zheng Y, Zhou L, Zuo J, Pan Y, Zhang H. Chem Eur J, 2019, 25: 5672–5676

    Article  CAS  PubMed  Google Scholar 

  12. Zinna F, Giovanella U, Bari LD. Adv Mater, 2015, 27: 1791–1795

    Article  CAS  PubMed  Google Scholar 

  13. Larsen CB, Wenger OS. Chem Eur J, 2018, 24: 2039–2058

    Article  CAS  PubMed  Google Scholar 

  14. Hossain A, Bhattacharyya A, Reiser O. Science, 2019, 364: eeav9713

    Article  Google Scholar 

  15. Xue SS, Pan Y, Pan W, Liu S, Li N, Tang B. Chem Sci, 2022, 13: 9468–9484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Troyano J, Zamora F, Delgado S. Chem Soc Rev, 2021, 50: 4606–4628

    Article  CAS  PubMed  Google Scholar 

  17. Sun C, Teo BK, Deng C, Lin J, Luo GG, Tung CH, Sun D. Coord Chem Rev, 2021, 427: 213576

    Article  CAS  Google Scholar 

  18. Chen Y, Li X, Li N, Quan Y, Cheng Y, Tang Y. Mater Chem Front, 2019, 3: 867–873

    Article  CAS  Google Scholar 

  19. Jiménez JR, Doistau B, Cruz CM, Besnard C, Cuerva JM, Campaña AG, Piguet C. J Am Chem Soc, 2019, 141: 13244–13252

    Article  PubMed  Google Scholar 

  20. Deng M, Mukthar NFM, Schley ND, Ung G. Angew Chem Int Ed, 2020, 59: 1228–1231

    Article  CAS  Google Scholar 

  21. Muthig AMT, Mrózek O, Ferschke T, Rödel M, Ewald B, Kuhnt J, Lenczyk C, Pflaum J, Steffen A. J Am Chem Soc, 2023, 145: 4438–4449

    Article  CAS  PubMed  Google Scholar 

  22. Zhou YH, Zhang AW, Huang RJ, Sun YH, Chen ZJ, Zhu BS, Zheng YX. J Mater Chem C, 2023, 11: 1329–1335

    Article  CAS  Google Scholar 

  23. Di D, Romanov AS, Yang L, Richter JM, Rivett JPH, Jones S, Thomas TH, Abdi Jalebi M, Friend RH, Linnolahti M, Bochmann M, Credgington D. Science, 2017, 356: 159–163

    Article  CAS  PubMed  Google Scholar 

  24. Hamze R, Peltier JL, Sylvinson D, Jung M, Cardenas J, Haiges R, Soleilhavoup M, Jazzar R, Djurovich PI, Bertrand G, Thompson ME. Science, 2019, 363: 601–606

    Article  CAS  PubMed  Google Scholar 

  25. Shi S, Jung MC, Coburn C, Tadle A, Sylvinson M. R. D, Djurovich PI, Forrest SR, Thompson ME. J Am Chem Soc, 2019, 141: 3576–3588

    Article  CAS  PubMed  Google Scholar 

  26. Romanov AS, Jones STE, Gu Q, Conaghan PJ, Drummond BH, Feng J, Chotard F, Buizza L, Foley M, Linnolahti M, Credgington D, Bochmann M. Chem Sci, 2020, 11: 435–446

    Article  CAS  PubMed  Google Scholar 

  27. Gernert M, Balles-Wolf L, Kerner F, Müller U, Schmiedel A, Holzapfel M, Marian CM, Pflaum J, Lambert C, Steffen A. J Am Chem Soc, 2020, 142: 8897–8909

    Article  CAS  PubMed  Google Scholar 

  28. Muniz CN, Schaab J, Razgoniaev A, Djurovich PI, Thompson ME. J Am Chem Soc, 2022, 144: 17916–17928

    Article  CAS  PubMed  Google Scholar 

  29. Ruduss A, Turovska B, Belyakov S, Stucere KA, Vembris A, Baryshnikov G, Ågren H, Lu JC, Lin WH, Chang CH, Traskovskis K. ACS Appl Mater Interfaces, 2022, 14: 15478–15493

    Article  CAS  PubMed  Google Scholar 

  30. Ying A, Huang YH, Lu CH, Chen Z, Lee WK, Zeng X, Chen T, Cao X, Wu CC, Gong S, Yang C. ACS Appl Mater Interfaces, 2021, 13: 13478–13486

    Article  CAS  PubMed  Google Scholar 

  31. Tang R, Xu S, Lam T, Cheng G, Du L, Wan Q, Yang J, Hung F, Low K, Phillips DL, Che C. Angew Chem Int Ed, 2022, 61: e202203982

    CAS  Google Scholar 

  32. Conaghan PJ, Matthews CSB, Chotard F, Jones STE, Greenham NC, Bochmann M, Credgington D, Romanov AS. Nat Commun, 2020, 11: 1758–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang H, Liu Y, Yu B, Song S, Zheng Y, Liu K, Chen P, Wang H, Jiang J, Li T. Angew Chem Int Ed, 2023, 62: e202217195

    Article  CAS  Google Scholar 

  34. Zobel JP, Wernbacher AM, González L. Angew Chem Int Ed, 2023, 62: e202217620

    Article  CAS  Google Scholar 

  35. Ying A, Ai Y, Yang C, Gong S. Angew Chem Int Ed, 2022, 61: e202210490

    CAS  Google Scholar 

  36. López R, Palomo C. Angew Chem Int Ed, 2022, 61: e202113504

    Google Scholar 

  37. Sharma N, Spuling E, Mattern CM, Li W, Fuhr O, Tsuchiya Y, Adachi C, Bräse S, Samuel IDW, Zysman-Colman E. Chem Sci, 2019, 10: 6689–6696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liao C, Zhang Y, Ye SH, Zheng WH. ACS Appl Mater Interfaces, 2021, 13: 25186–25192

    Article  CAS  PubMed  Google Scholar 

  39. Liao X-, Pu D, Yuan L, Tong J, Xing S, Tu Z, Zuo J, Zheng W, Zheng Y. Angew Chem Int Ed, 2023, 62: e202217045

    Article  CAS  Google Scholar 

  40. Li J, Wang L, Zhao Z, Li X, Yu X, Huo P, Jin Q, Liu Z, Bian Z, Huang C. Angew Chem Int Ed, 2020, 59: 8210–8217

    Article  CAS  Google Scholar 

  41. Feng J, Reponen A-M, Romanov AS, Linnolahti M, Bochmann M, Greenham NC, Penfold T, Credgington D. Adv Funct Mater, 2020, 31: 2005438

    Article  Google Scholar 

  42. Feng J, Taffet EJ, Reponen APM, Romanov AS, Olivier Y, Lemaur V, Yang L, Linnolahti M, Bochmann M, Beljonne D, Credgington D. Chem Mater, 2020, 32: 4743–4753

    Article  CAS  Google Scholar 

  43. Ni F, Huang CW, Tang Y, Chen Z, Wu Y, Xia S, Cao X, Hsu JH, Lee WK, Zheng K, Huang Z, Wu CC, Yang C. Mater Horiz, 2020, 8: 547–555

    Article  PubMed  Google Scholar 

  44. Gong ZL, Zhong YW. Sci China Chem, 2021, 64: 788–799

    Article  CAS  Google Scholar 

  45. Ning W, Wang H, Gong S, Zhong C, Yang C. Sci China Chem, 2022, 65: 1715–1719

    Article  CAS  Google Scholar 

  46. Zhang YP, Song SQ, Mao MX, Li CH, Zheng YX, Zuo JL. Sci China Chem, 2022, 65: 1347–1355

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Shaolong Gong gratefully acknowledges financial support from the National Natural Science Foundation of China (52022071 and 51873158). The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of Wuhan University. We are particularly grateful to Prof. Y.-X. Zheng’s group (Nanjing University) for providing the support of the CPL measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaolong Gong.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Supporting information

The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, A., Zhan, L., Tan, Y. et al. Copper(I) complexes with planar chirality realize efficient circularly polarized electroluminescence. Sci. China Chem. 66, 2274–2282 (2023). https://doi.org/10.1007/s11426-023-1635-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1635-5

Navigation