Skip to main content
Log in

From atomistic modeling to materials design: computation-driven material development in lithium-ion batteries

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

As an advanced energy storage system, lithium-ion batteries play an essential role in modern technologies. Despite their ubiquitous success, there is a great demand for continuous improvements of the battery performance, including higher energy density, lower safety risk, longer cycling life, and lower cost. Such performance improvement requires the design and development of novel electrode and electrolyte materials that exhibit desirable properties and satisfy strict requirements. Atomistic modeling can provide a unique perspective to fundamentally understand and rationally design battery materials. In this paper, we review a few recent successful examples of computation-driven discovery and design in electrode and electrolyte materials. Particularly, we highlight how atomistic modeling can reveal the underlying mechanisms, predict the important properties, and guide the design and engineering of electrode and electrolyte materials. We have a conclusion with a discussion of the unique capability of atomistic modeling in battery material development and provide a perspective on future challenges and directions for computation-driven battery material developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fang S, Bresser D, Passerini S. Transition Metal Oxides for Electrochemical Energy Storage. In: Nanda J, Augustyn V. Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium-and Sodium-ion Batteries Weiheim: Wiley-VCH, 2022. 55–90

    Chapter  Google Scholar 

  2. Li M, Lu J, Chen Z, Amine K. Adv Mater, 2018, 30: 1800561

    Article  Google Scholar 

  3. Whittingham MS. Chem Rev, 2014, 114: 11414–11443

    Article  CAS  PubMed  Google Scholar 

  4. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB. Mater Res Bull, 1980, 15: 783–789

    Article  CAS  Google Scholar 

  5. Thackeray MM, Johnson PJ, de Picciotto LA, Bruce PG, Good-enough JB. Mater Res Bull, 1984, 19: 179–187

    Article  CAS  Google Scholar 

  6. Padhi AK, Nanjundaswamy KS, Masquelier C, Goodenough JB. J Electrochem Soc, 1997, 144: 2581–2586

    Article  CAS  Google Scholar 

  7. Fong R, von Sacken U, Dahn JR. J Electrochem Soc, 1990, 137: 2009–2013

    Article  CAS  Google Scholar 

  8. Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A. Nat Mater, 2011, 10: 682–686

    Article  CAS  PubMed  Google Scholar 

  9. Murugan R, Thangadurai V, Weppner W. Angew Chem Int Ed, 2007, 46: 7778–7781

    Article  CAS  Google Scholar 

  10. Fan X, Wang C. Chem Soc Rev, 2021, 50: 10486–10566

    Article  CAS  PubMed  Google Scholar 

  11. Zhang X, Tang B, Zhou Z. Green Energy Environ, 2021, 6: 3–4

    Article  Google Scholar 

  12. Jain A, Shin Y, Persson KA. Nat Rev Mater, 2016, 1: 15004

    Article  CAS  Google Scholar 

  13. Sun Y, Yang T, Ji H, Zhou J, Wang Z, Qian T, Yan C. Adv Energy Mater, 2020, 10: 2002373

    Article  CAS  Google Scholar 

  14. Urban A, Seo DH, Ceder G. npj Comput Mater, 2016, 2: 16002

    Article  CAS  Google Scholar 

  15. Nolan AM, Zhu Y, He X, Bai Q, Mo Y. Joule, 2018, 2: 2016–2046

    Article  CAS  Google Scholar 

  16. Meng YS, Arroyo-de Dompablo ME. Energy Environ Sci, 2009, 2: 589–609

    Article  CAS  Google Scholar 

  17. Kirklin S, Meredig B, Wolverton C. Adv Energy Mater, 2013, 3: 252–262

    Article  CAS  Google Scholar 

  18. Ceder G. MRS Bull, 2010, 35: 693–701

    Article  CAS  Google Scholar 

  19. Yao N, Chen X, Fu ZH, Zhang Q. Chem Rev, 2022, 122: 10970–11021

    Article  CAS  PubMed  Google Scholar 

  20. Shevlin S, Castro B, Li X. Nat Mater, 2021, 20: 727

    Article  PubMed  Google Scholar 

  21. Liang J, Li X, Wang S, Adair KR, Li W, Zhao Y, Wang C, Hu Y, Zhang L, Zhao S, Lu S, Huang H, Li R, Mo Y, Sun X. J Am Chem Soc, 2020, 142: 7012–7022

    Article  CAS  PubMed  Google Scholar 

  22. Wang S, Bai Q, Nolan AM, Liu Y, Gong S, Sun Q, Mo Y. Angew Chem Int Ed, 2019, 58: 8039–8043

    Article  CAS  Google Scholar 

  23. Li X, Liang J, Kim JT, Fu J, Duan H, Chen N, Li R, Zhao S, Wang J, Huang H, Sun X. Adv Mater, 2022, 34: 2200856

    Article  CAS  Google Scholar 

  24. Huang M, Feng S, Zhang W, Giordano L, Chen M, Amanchukwu CV, Anandakathir R, Shao-Horn Y, Johnson JA. Energy Environ Sci, 2018, 11: 1326–1334

    Article  CAS  Google Scholar 

  25. Lun Z, Ouyang B, Kwon DH, Ha Y, Foley EE, Huang TY, Cai Z, Kim H, Balasubramanian M, Sun Y, Huang J, Tian Y, Kim H, McCloskey BD, Yang W, Clément RJ, Ji H, Ceder G. Nat Mater, 2021, 20: 214–221

    Article  CAS  PubMed  Google Scholar 

  26. Zhou L, Zuo TT, Kwok CY, Kim SY, Assoud A, Zhang Q, Janek J, Nazar LF. Nat Energy, 2022, 7: 83–93

    Article  CAS  Google Scholar 

  27. Li X, Liang J, Chen N, Luo J, Adair KR, Wang C, Banis MN, Sham TK, Zhang L, Zhao S, Lu S, Huang H, Li R, Sun X. Angew Chem Int Ed, 2019, 58: 16427–16432

    Article  CAS  Google Scholar 

  28. Clément RJ, Lun Z, Ceder G. Energy Environ Sci, 2020, 13: 345–373

    Article  Google Scholar 

  29. Liu W, Oh P, Liu X, Lee MJ, Cho W, Chae S, Kim Y, Cho J. Angew Chem Int Ed, 2015, 54: 4440–4457

    Article  CAS  Google Scholar 

  30. Kim UH, Jun DW, Park KJ, Zhang Q, Kaghazchi P, Aurbach D, Major DT, Goobes G, Dixit M, Leifer N, Wang CM, Yan P, Ahn D, Kim KH, Yoon CS, Sun YK. Energy Environ Sci, 2018, 11: 1271–1279

    Article  CAS  Google Scholar 

  31. Shi Y, Xing Y, Kim K, Yu T, Lipson AL, Dameron A, Connell JG. J Electrochem Soc, 2021, 168: 040501

    Article  CAS  Google Scholar 

  32. Wandt J, Freiberg ATS, Ogrodnik A, Gasteiger HA. Mater Today, 2018, 21: 825–833

    Article  CAS  Google Scholar 

  33. Xu GL, Liu Q, Lau KKS, Liu Y, Liu X, Gao H, Zhou X, Zhuang M, Ren Y, Li J, Shao M, Ouyang M, Pan F, Chen Z, Amine K, Chen G. Nat Energy, 2019, 4: 484–494

    Article  CAS  Google Scholar 

  34. Stoyanova R. Solid State Ion, 2003, 161: 197–204

    Article  CAS  Google Scholar 

  35. Urban A, Lee J, Ceder G. Adv Energy Mater, 2014, 4: 1400478

    Article  Google Scholar 

  36. Lee J, Urban A, Li X, Su D, Hautier G, Ceder G. Science, 2014, 343: 519–522

    Article  CAS  PubMed  Google Scholar 

  37. Van der Ven A, Bhattacharya J, Belak AA. Acc Chem Res, 2013, 46: 1216–1225

    Article  CAS  PubMed  Google Scholar 

  38. Ji H, Urban A, Kitchaev DA, Kwon DH, Artrith N, Ophus C, Huang W, Cai Z, Shi T, Kim JC, Kim H, Ceder G. Nat Commun, 2019, 10: 592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Urban A, Abdellahi A, Dacek S, Artrith N, Ceder G. Phys Rev Lett, 2017, 119: 176402

    Article  PubMed  Google Scholar 

  40. Lee J, Seo DH, Balasubramanian M, Twu N, Li X, Ceder G. Energy Environ Sci, 2015, 8: 3255–3265

    Article  CAS  Google Scholar 

  41. Zhao Q, Stalin S, Zhao CZ, Archer LA. Nat Rev Mater, 2020, 5: 229–252

    Article  CAS  Google Scholar 

  42. Sun YK. ACS Energy Lett, 2020, 5: 3221–3223

    Article  CAS  Google Scholar 

  43. Zhu Y, He X, Mo Y. ACS Appl Mater Interfaces, 2015, 7: 23685–23693

    Article  CAS  PubMed  Google Scholar 

  44. Tanibata N, Takimoto S, Nakano K, Takeda H, Nakayama M, Sumi H. ACS Mater Lett, 2020, 2: 880–886

    Article  CAS  Google Scholar 

  45. Gordiz K, Muy S, Zeier WG, Shao-Horn Y, Henry A. Cell Rep Phys Sci, 2021, 2: 100431

    Article  CAS  Google Scholar 

  46. Kwak H, Wang S, Park J, Liu Y, Kim KT, Choi Y, Mo Y, Jung YS. ACS Energy Lett, 2022, 7: 1776–1805

    Article  CAS  Google Scholar 

  47. Wang K, Ren Q, Gu Z, Duan C, Wang J, Zhu F, Fu Y, Hao J, Zhu J, He L, Wang CW, Lu Y, Ma J, Ma C. Nat Commun, 2021, 12: 4410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang Y, Richards WD, Ong SP, Miara LJ, Kim JC, Mo Y, Ceder G. Nat Mater, 2015, 14: 1026–1031

    Article  CAS  PubMed  Google Scholar 

  49. Lin YY, Yong AXB, Gustafson WJ, Reedy CN, Ertekin E, Krogstad JA, Perry NH. Curr Opin Solid State Mater Sci, 2020, 24: 100875

    Article  CAS  Google Scholar 

  50. Ohno S, Banik A, Dewald GF, Kraft MA, Krauskopf T, Minafra N, Till P, Weiss M, Zeier WG. Prog Energy, 2020, 2: 022001

    Article  Google Scholar 

  51. Wang C, Xu BB, Zhang X, Sun W, Chen J, Pan H, Yan M, Jiang Y. Small, 2022, 18: 2107064

    Article  CAS  Google Scholar 

  52. Kraft MA, Culver SP, Calderon M, Böcher F, Krauskopf T, Senyshyn A, Dietrich C, Zevalkink A, Janek J, Zeier WG. J Am Chem Soc, 2017, 139: 10909–10918

    Article  CAS  PubMed  Google Scholar 

  53. Culver SP, Koerver R, Krauskopf T, Zeier WG. Chem Mater, 2018, 30: 4179–4192

    Article  CAS  Google Scholar 

  54. Muy S, Bachman JC, Giordano L, Chang HH, Abernathy DL, Bansal D, Delaire O, Hori S, Kanno R, Maglia F, Lupart S, Lamp P, Shao-Horn Y. Energy Environ Sci, 2018, 11: 850–859

    Article  CAS  Google Scholar 

  55. Muy S, Voss J, Schlem R, Koerver R, Sedlmaier SJ, Maglia F, Lamp P, Zeier WG, Shao-Horn Y. iScience, 2019, 16: 270–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schlem R, Muy S, Prinz N, Banik A, Shao-Horn Y, Zobel M, Zeier WG. Adv Energy Mater, 2020, 10: 1903719

    Article  CAS  Google Scholar 

  57. Kanno R, Murayama M. J Electrochem Soc, 2001, 148: A742

    Article  CAS  Google Scholar 

  58. Muy S, Bachman JC, Chang HH, Giordano L, Maglia F, Lupart S, Lamp P, Zeier WG, Shao-Horn Y. Chem Mater, 2018, 30: 5573–5582

    Article  CAS  Google Scholar 

  59. Di Stefano D, Miglio A, Robeyns K, Filinchuk Y, Lechartier M, Senyshyn A, Ishida H, Spannenberger S, Prutsch D, Lunghammer S, Rettenwander D, Wilkening M, Roling B, Kato Y, Hautier G. Chem, 2019, 5: 2450–2460

    Article  CAS  Google Scholar 

  60. Martínez-Juárez A, Pecharromán C, Iglesias JE, Rojo JM. J Phys Chem B, 1998, 102: 372–375

    Article  Google Scholar 

  61. Schlem R, Ghidiu M, Culver SP, Hansen AL, Zeier WG. ACS Appl Energy Mater, 2019, 3: 9–18

    Article  Google Scholar 

  62. Kong ST, Deiseroth HJ, Maier J, Nickel V, Weichert K, Reiner C. Z anorg allg Chem, 2010, 636: 1920–1924

    Article  CAS  Google Scholar 

  63. Schlem R, Bernges T, Li C, Kraft MA, Minafra N, Zeier WG. ACS Appl Energy Mater, 2020, 3: 3684–3691

    Article  CAS  Google Scholar 

  64. Sagotra AK, Chu D, Cazorla C. Phys Rev Mater, 2019, 3: 035405

    Article  CAS  Google Scholar 

  65. Yelon A, Movaghar B, Branz HM. Phys Rev B, 1992, 46: 12244–12250

    Article  CAS  Google Scholar 

  66. Metselaar R, Oversluizen G. J Solid State Chem, 1984, 55: 320–326

    Article  CAS  Google Scholar 

  67. Chen R, Xu Z, Lin Y, Lv B, Bo SH, Zhu H. ACS Appl Energy Mater, 2021, 4: 2107–2114

    Article  CAS  Google Scholar 

  68. Bartók AP, Kermode J, Bernstein N, Csányi G. Phys Rev X, 2018, 8: 041048

    Google Scholar 

  69. Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S. Adv Mater, 2018, 30: 1803075

    Article  Google Scholar 

  70. Li X, Liang J, Luo J, Norouzi Banis M, Wang C, Li W, Deng S, Yu C, Zhao F, Hu Y, Sham TK, Zhang L, Zhao S, Lu S, Huang H, Li R, Adair KR, Sun X. Energy Environ Sci, 2019, 12: 2665–2671

    Article  CAS  Google Scholar 

  71. Kwak H, Han D, Lyoo J, Park J, Jung SH, Han Y, Kwon G, Kim H, Hong ST, Nam KW, Jung YS. Adv Energy Mater, 2021, 11: 2003190

    Article  CAS  Google Scholar 

  72. Liu Z, Ma S, Liu J, Xiong S, Ma Y, Chen H. ACS Energy Lett, 2020, 6: 298–304

    Article  Google Scholar 

  73. Li X, Liang J, Yang X, Adair KR, Wang C, Zhao F, Sun X. Energy Environ Sci, 2020, 13: 1429–1461

    Article  CAS  Google Scholar 

  74. He X, Zhu Y, Mo Y. Nat Commun, 2017, 8: 15893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang G, Liang X, Zheng S, Chen H, Zhang W, Li S, Pan F. eScience, 2022, 2: 79–86

    Article  Google Scholar 

  76. Kanno R, Takeda Y, Yamamoto O. Mater Res Bull, 1981, 16: 999–1005

    Article  Google Scholar 

  77. Liu Y, Wang S, Nolan AM, Ling C, Mo Y. Adv Energy Mater, 2020, 10: 2002356

    Article  CAS  Google Scholar 

  78. Liang J, Li X, Adair KR, Sun X. Acc Chem Res, 2021, 54: 1023–1033

    Article  CAS  PubMed  Google Scholar 

  79. Yamada Y, Wang J, Ko S, Watanabe E, Yamada A. Nat Energy, 2019, 4: 269–280

    Article  CAS  Google Scholar 

  80. Xu K. Chem Rev, 2004, 104: 4303–4418

    Article  CAS  PubMed  Google Scholar 

  81. Xu K. Chem Rev, 2014, 114: 11503–11618

    Article  CAS  PubMed  Google Scholar 

  82. Dokko K, Watanabe D, Ugata Y, Thomas ML, Tsuzuki S, Shinoda W, Hashimoto K, Ueno K, Umebayashi Y, Watanabe M. J Phys Chem B, 2018, 122: 10736–10745

    Article  CAS  PubMed  Google Scholar 

  83. Borodin O, Suo L, Gobet M, Ren X, Wang F, Faraone A, Peng J, Olguin M, Schroeder M, Ding MS, Gobrogge E, von Wald Cresce A, Munoz S, Dura JA, Greenbaum S, Wang C, Xu K. ACS Nano, 2017, 11: 10462–10471

    Article  CAS  PubMed  Google Scholar 

  84. Park MS, Ma SB, Lee DJ, Im D, Doo SG, Yamamoto O. Sci Rep, 2015, 4: 3815

    Article  Google Scholar 

  85. Chen X, Shen X, Li B, Peng H-, Cheng X-, Li B-, Zhang X-, Huang J-, Zhang Q. Angew Chem Int Ed, 2018, 57: 734–737

    Article  CAS  Google Scholar 

  86. Chen X, Yao N, Zeng BS, Zhang Q. Fundamental Res, 2021, 1: 393–398

    Article  CAS  Google Scholar 

  87. Chen X, Li HR, Shen X, Zhang Q. Angew Chem Int Ed, 2018, 57: 16643–16647

    Article  CAS  Google Scholar 

  88. Zhang XQ, Cheng XB, Chen X, Yan C, Zhang Q. Adv Funct Mater, 2017, 27: 1605989

    Article  Google Scholar 

  89. Shi Q, Zhong Y, Wu M, Wang H, Wang H. Proc Natl Acad Sci USA, 2018, 115: 5676–5680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fu J, Ji X, Chen J, Chen L, Fan X, Mu D, Wang C. Angew Chem Int Ed, 2020, 59: 22194–22201

    Article  CAS  Google Scholar 

  91. Li W, Yao H, Yan K, Zheng G, Liang Z, Chiang YM, Cui Y. Nat Commun, 2015, 6: 7436

    Article  PubMed  Google Scholar 

  92. Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen X, Shao Y, Engelhard MH, Nie Z, Xiao J, Liu X, Sushko PV, Liu J, Zhang JG. J Am Chem Soc, 2013, 135: 4450–4456

    Article  CAS  PubMed  Google Scholar 

  93. Chen X, Shen X, Hou TZ, Zhang R, Peng HJ, Zhang Q. Chem, 2020, 6: 2242–2256

    Article  CAS  Google Scholar 

  94. Li Z, Borodin O, Smith GD, Bedrov D. J Phys Chem B, 2015, 119: 3085–3096

    Article  CAS  PubMed  Google Scholar 

  95. Self J, Fong KD, Persson KA. ACS Energy Lett, 2019, 4: 2843–2849

    Article  CAS  Google Scholar 

  96. Deringer VL, Caro MA, Csányi G. Adv Mater, 2019, 31: 1902765

    Article  CAS  Google Scholar 

  97. Unke OT, Chmiela S, Sauceda HE, Gastegger M, Poltavsky I, Schütt KT, Tkatchenko A, Müller KR. Chem Rev, 2021, 121: 10142–10186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pollice R, dos Passos Gomes G, Aldeghi M, Hickman RJ, Krenn M, Lavigne C, Lindner-D’Addario M, Nigam AK, Ser CT, Yao Z, Aspuru-Guzik A. Acc Chem Res, 2021, 54: 849–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Huang JX, Csányi G, Zhao JB, Cheng J, Deringer VL. J Mater Chem A, 2019, 7: 19070–19080

    Article  CAS  Google Scholar 

  100. Zhu Z, Zhu Y. Acc Mater Res, 2022, 3: 1101–1105

    Article  CAS  Google Scholar 

  101. Wang A, Kadam S, Li H, Shi S, Qi Y. npj Comput Mater, 2018, 4: 15

    Article  Google Scholar 

  102. Zhang H, Yang Y, Ren D, Wang L, He X. Energy Storage Mater, 2021, 36: 147–170

    Article  Google Scholar 

  103. Yang M, Liu Y, Nolan AM, Mo Y. Adv Mater, 2021, 33: 2008081

    Article  CAS  Google Scholar 

  104. Zhang X, Yang Y, Zhou Z. Chem Soc Rev, 2020, 49: 3040–3071

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

X.L. and Y.Z. would like to acknowledge funding support from the Research Center for industries of the Future (RCIF) at Westlake University and the start-up fund from Westlake University. X.C. appreciates the support from the National Natural Science Foundation of China (22109086), Young Elite Scientists Sponsorship Program by CAST (2021QNRC001), and the Shuimu Tsinghua Scholar Program of Tsinghua University. Q.B. acknowledged the support from the National Natural Science Foundation of China (22109113) and the Natural Science Foundation of Shanxi Province (20210302124105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizhou Zhu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Chen, X., Bai, Q. et al. From atomistic modeling to materials design: computation-driven material development in lithium-ion batteries. Sci. China Chem. 67, 276–290 (2024). https://doi.org/10.1007/s11426-022-1506-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1506-1

Navigation