Skip to main content
Log in

Iridium and B(C6F5)3 co-catalyzed chemoselective deoxygenative reduction of tertiary amides: application to the efficient synthesis and late-stage modification of pharmaceuticals

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The Vaska’s complex—tris(pentafluorophenyl)borane combination was found to be a highly efficient cooperative catalysis system for the hydrosilylative reduction of tertiary amides to yield amines under mild conditions. The reaction shows high chemoselectivity, tolerating halide, phenolyl, alkenyl, nitro, nitrile, ester, azido, ketone, and enone functional groups. For unsubstituted cyclohexanone carboxamide, two variations were established to achieve either catalytic concomitant reduction of the two carbonyl groups or selective reduction of the amide carbonyl. The protocol was applied to the efficient synthesis and late-stage modification of several pharmaceuticals and derivatives. Importantly, we showed that by simply prolonging reaction time to 24–28 h, the reaction can reach an exceptionally high efficiency with turnover number (TON) up to 9.8×106 and turnover frequency (TOF) up to 408,333 at a quite low catalyst loading of 0.00001 mol% (S/C (Ir) = 10,000,000).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Daly JW, Spande TF, Garraffo HM. J Nat Prod, 2005, 68: 1556–1575

    Article  CAS  PubMed  Google Scholar 

  2. Vitaku E, Smith DT, Njardarson JT. J Med Chem, 2014, 57: 10257–10274

    Article  CAS  PubMed  Google Scholar 

  3. Chen X, Zhang HJ, Yang X, Lv H, Shao X, Tao C, Wang H, Cheng B, Li Y, Guo J, Zhang J, Zhai H. Angew Chem Int Ed, 2018, 57: 947–951

    Article  CAS  Google Scholar 

  4. Owens KR, McCowen SV, Blackford KA, Ueno S, Hirooka Y, Weber M, Sarpong R. J Am Chem Soc, 2019, 141: 13713–13717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen Y, Zhang W, Ren L, Li J, Li A. Angew Chem Int Ed, 2018, 57: 952–956

    Article  CAS  Google Scholar 

  6. Zhang Y, Chen Y, Song M, Tan B, Jiang Y, Yan C, Jiang Y, Hu X, Zhang C, Chen W, Xu J. J Am Chem Soc, 2022, 144: 16042–16051

    Article  CAS  PubMed  Google Scholar 

  7. Nakayama Y, Maeda Y, Kotatsu M, Sekiya R, Ichiki M, Sato T, Chida N. Chem Eur J, 2016, 22: 3300–3303

    Article  CAS  PubMed  Google Scholar 

  8. Yamagata ADG, Dixon DJ. Org Lett, 2017, 19: 1894–1897

    Article  Google Scholar 

  9. Sugiyama Y, Soda Y, Yoritate M, Tajima H, Takahashi Y, Shibuya K, Ogihara C, Yokoyama T, Oishi T, Sato T, Chida N. Bull Chem Soc Jpn, 2022, 95: 278–287

    Article  CAS  Google Scholar 

  10. Magano J, Dunetz JR. Org Process Res Dev, 2012, 16: 1156–1184

    Article  CAS  Google Scholar 

  11. Werkmeister S, Junge K, Beller M. Org Process Res Dev, 2014, 18: 289–302

    Article  CAS  Google Scholar 

  12. Greenberg A, Breneman CM, Liebman JF. The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Materials Science. New York: Wiley, 2003

    Google Scholar 

  13. Park H, Li Y, Yu J. Angew Chem Int Ed, 2019, 58: 11424–11428

    Article  CAS  Google Scholar 

  14. Huo H, Gorsline BJ, Fu GC. Science, 2020, 367: 559–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tu JL, Tang W, He SH, Su M, Liu F. Sci China Chem, 2022, 65: 1330–1337

    Article  CAS  Google Scholar 

  16. Pace V, Holzer W, Olofsson B. Adv Synth Catal, 2014, 356: 3697–3736

    Article  CAS  Google Scholar 

  17. Seyden-Penne J. Reductions by the Alumino- and Borohydrides in Organic Synthesis. 2nd Ed. Weinheim: Wiley-VCH, 1997

    Google Scholar 

  18. Chardon A, Morisset E, Rouden J, Blanchet J. Synthesis, 2018, 50: 984–997

    Article  CAS  Google Scholar 

  19. Barbe G, Charette AB. J Am Chem Soc, 2008, 130: 18–19

    Article  CAS  PubMed  Google Scholar 

  20. Xiang SH, Xu JA, Yuan, HQ, Huang PQ. Synlett 2010, 1829–1832

  21. Huang PQ, Lang QW, Wang YR. J Org Chem, 2016, 81: 4235–4243

    Article  CAS  PubMed  Google Scholar 

  22. Sitte NA, Bursch M, Grimme S, Paradies J. J Am Chem Soc, 2019, 141: 159–162

    Article  CAS  PubMed  Google Scholar 

  23. Więcław MM, Stecko S. Eur J Org Chem, 2018, 2018: 6601–6623

    Article  Google Scholar 

  24. Ganem B, Franke RR. J Org Chem, 2007, 72: 3981–3987

    Article  CAS  PubMed  Google Scholar 

  25. Huang PQ, Geng H. Org Chem Front, 2015, 2: 150–158

    Article  CAS  Google Scholar 

  26. Ong DY, Yen Z, Yoshii A, Revillo Imbernon J, Takita R, Chiba S. Angew Chem Int Ed, 2019, 58: 4992–4997

    Article  CAS  Google Scholar 

  27. Tahara A, Nagashima H. Tetrahedron Lett, 2020, 61: 151423–151426

    Article  CAS  Google Scholar 

  28. Une Y, Tahara A, Miyamoto Y, Sunada Y, Nagashima H. Organometallics, 2019, 38: 852–862

    Article  CAS  Google Scholar 

  29. Motoyama Y, Aoki M, Takaoka N, Aoto R, Nagashima H. Chem Commun, 2009, 1574–1576

  30. Cheng C, Brookhart M. J Am Chem Soc, 2012, 134: 11304–11307

    Article  CAS  PubMed  Google Scholar 

  31. Das S, Li Y, Bornschein C, Pisiewicz S, Kiersch K, Michalik D, Gallou F, Junge K, Beller M. Angew Chem Int Ed, 2015, 54: 12389–12393

    Article  CAS  Google Scholar 

  32. Cabrero-Antonino JR, Adam R, Papa V, Beller M. Nat Commun, 2020, 11: 3893

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yuan ML, Xie JH, Zhu SF, Zhou QL. ACS Catal, 2016, 6: 3665–3669

    Article  CAS  Google Scholar 

  34. Yuan ML, Xie JH, Zhou QL. ChemCatChem, 2016, 8: 3036–3040

    Article  CAS  Google Scholar 

  35. Xie Y, Hu P, Bendikov T, Milstein D. Catal Sci Technol, 2018, 8: 2784–2788

    Article  CAS  Google Scholar 

  36. Papa V, Cabrero-Antonino JR, Spannenberg A, Junge K, Beller M. Catal Sci Technol, 2020, 10: 6116–6128

    Article  CAS  Google Scholar 

  37. Tamang SR, Singh A, Bedi D, Bazkiaei AR, Warner AA, Glogau K, McDonald C, Unruh DK, Findlater M. Nat Catal, 2020, 3: 154–162

    Article  CAS  Google Scholar 

  38. Barger CJ, Dicken RD, Weidner VL, Motta A, Lohr TL, Marks TJ. J Am Chem Soc, 2020, 142: 8019–8028

    Article  CAS  PubMed  Google Scholar 

  39. Weng ZZ, Chen CL, Ye LW, Long LS, Zheng LS, Kong XJ. Sci China Chem, 2023, 66: 443–448

    Article  CAS  Google Scholar 

  40. Tan MX, Zhang Y. Tetrahedron Lett, 2009, 50: 4912–4915

    Article  CAS  Google Scholar 

  41. Blondiaux E, Cantat T. Chem Commun, 2014, 50: 9349–9352

    Article  CAS  Google Scholar 

  42. Chadwick RC, Kardelis V, Lim P, Adronov A. J Org Chem, 2014, 79: 7728–7733

    Article  CAS  PubMed  Google Scholar 

  43. Augurusa A, Mehta M, Perez M, Zhu J, Stephan DW. Chem Commun, 2016, 52: 12195–12198

    Article  CAS  Google Scholar 

  44. Bender TA, Payne PR, Gagné MR. Nat Chem, 2018, 10: 85–90

    Article  CAS  PubMed  Google Scholar 

  45. Pan Y, Luo Z, Han J, Xu X, Chen C, Zhao H, Xu L, Fan Q, Xiao J. Adv Synth Catal, 2019, 361: 2301–2308

    Article  CAS  Google Scholar 

  46. Pan Y, Luo Z, Xu X, Zhao H, Han J, Xu L, Fan Q, Xiao J. Adv Synth Catal, 2019, 361: 3800–3806

    Article  CAS  Google Scholar 

  47. Xiao KJ, Luo JM, Ye KY, Wang Y, Huang PQ. Angew Chem Int Ed, 2010, 49: 3037–3040

    Article  CAS  Google Scholar 

  48. Huang PQ, Ou W, Han F. Chem Commun, 2016, 52: 11967–11970

    Article  CAS  Google Scholar 

  49. Chen DH, Sun WT, Zhu CJ, Lu GS, Wu DP, Wang AE, Huang PQ. Angew Chem Int Ed, 2021, 60: 8827–8831

    Article  CAS  Google Scholar 

  50. Li Z, Zhao F, Ou W, Huang PQ, Wang X. Angew Chem Int Ed, 2021, 60: 26604–26609

    Article  CAS  Google Scholar 

  51. Chen H, Wu ZZ, Shao DY, Huang PQ. Sci Adv, 2022, 8: eade3431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vaska L, DiLuzio JW. J Am Chem Soc, 1961, 83: 2784–2785

    Article  CAS  Google Scholar 

  53. Matheau-Raven D, Gabriel P, Leitch JA, Almehmadi YA, Yamazaki K, Dixon DJ. ACS Catal, 2020, 10: 8880–8897

    Article  CAS  Google Scholar 

  54. Parks DJ, Blackwell JM, Piers WE. J Org Chem, 2000, 65: 3090–3098

    Article  CAS  PubMed  Google Scholar 

  55. Blackwell JM, Sonmor ER, Scoccitti T, Piers WE. Org Lett, 2000, 2: 3921–3923

    Article  CAS  PubMed  Google Scholar 

  56. Piers WE, Marwitz AJV, Mercier LG. Inorg Chem, 2011, 50: 12252–12262

    Article  CAS  PubMed  Google Scholar 

  57. Stephan DW, Erker G. Angew Chem Int Ed, 2015, 54: 6400–6441

    Article  CAS  Google Scholar 

  58. Fang H, Oestreich M. Chem Sci, 2020, 11: 12604–12615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kolb HC, Sharpless KB. Drug Discovery Today, 2003, 8: 1128–1137

    Article  CAS  PubMed  Google Scholar 

  60. Yang ZP, Lu GS, Ye JL, Huang PQ. Tetrahedron, 2019, 75: 1624–1631

    Article  CAS  Google Scholar 

  61. Küenburg B, Czollner L, Fröhlich J, Jordis U. Org Process Res Dev, 1999, 3: 425–431

    Article  Google Scholar 

  62. Narayan ARH, Jiménez-Osés G, Liu P, Negretti S, Zhao W, Gilbert MM, Ramabhadran RO, Yang YF, Furan LR, Li Z, Podust LM, Montgomery J, Houk KN, Sherman DH. Nat Chem, 2015, 7: 653–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yoon SH, Lee E, Cho DY, Ko HM, Baek HY, Choi DK, Kim E, Park JY. Bioorg Med Chem Lett, 2021, 36: 127780

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21931010). We acknowledge Dr. Lei-Tao Huan for checking the TON and TOF of the reduction of 1g by repeating the experiment. We thank Ms. Yan-Jiao Gao for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Qiang Huang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

11426_2022_1501_MOESM1_ESM.pdf

Iridium and B(C6F5)3 co-catalyzed chemoselective deoxygenative reduction of tertiary amides: application to the efficient synthesis and late-stage modification of pharmaceuticals

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, F., Lu, GS., Wu, DP. et al. Iridium and B(C6F5)3 co-catalyzed chemoselective deoxygenative reduction of tertiary amides: application to the efficient synthesis and late-stage modification of pharmaceuticals. Sci. China Chem. 66, 1094–1100 (2023). https://doi.org/10.1007/s11426-022-1501-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1501-y

Navigation