Skip to main content
Log in

Organic white-light sources: multiscale construction of organic luminescent materials from molecular to macroscopic level

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Organic luminescent materials play an integral role in the optoelectronic applications of displays and solid-state lighting. Nevertheless, high-performance organic luminescent materials require the efficient combination of two or more kinds of materials, which is extremely difficult owing to the completely different self-assembly behaviors of multicomponent molecules. Herein, based on a broad scale from the molecular, micro-/nano-scale, and macroscopic levels, we successfully demonstrate the multiscale construction of organic luminescent microwires of cocrystals, solid solutions, and core-shell microstructures. Through the wide selection of electron donor/acceptor pairs, a series of color-tunable charge-transfer (CT) cocrystals are formed via the intermolecular cooperative self-assembly process. On this basis, the high structural compatibility and perfect lattice mismatching (∼1.1%) of cocrystals are critical factors that facilitate the combination of dissimilar materials to form solid solutions and core/shell microwires. Significantly, because of the full-spectrum light transport from 400 to 800 nm, the nano-micro-scaled solid solution microwires act as microscale white-light sources [CIE (0.32, 0.36)]. Meanwhile, the macroscopic-scale core/shell organic-microwires demonstrate tunable white-light emission with a high color-rendering index (CRI) of 83, whose CIE coordinates span from (0.37,0.39) to (0.40,0.31). Therefore, our work provides a feasible approach to the multiscale synthesis of novel luminescent organic semiconductor materials, which could lay a solid foundation for organic optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qin Z, Gao H, Liu J, Zhou K, Li J, Dang Y, Huang L, Deng H, Zhang X, Dong H, Hu W. Adv Mater, 2019, 31: 1903175

    Article  CAS  Google Scholar 

  2. Sun MJ, Liu Y, Zeng W, Zhao YS, Zhong YW, Yao J. J Am Chem Soc, 2019, 141: 6157–6161

    Article  CAS  PubMed  Google Scholar 

  3. Kato T, Yoshio M, Ichikawa T, Soberats B, Ohno H, Funahashi M. Nat Rev Mater, 2017, 2: 17001

    Article  Google Scholar 

  4. Zhao Z, Lam JWY, Tang BZ. J Mater Chem, 2012, 22: 23726–23740

    Article  CAS  Google Scholar 

  5. Ha JM, Hur SH, Pathak A, Jeong JE, Woo HY. NPG Asia Mater, 2021, 13: 53

    Article  CAS  Google Scholar 

  6. Hu R, Leung NLC, Tang BZ. Chem Soc Rev, 2014, 43: 4494–4562

    Article  CAS  PubMed  Google Scholar 

  7. Kaeser A, Schenning APHJ. Adv Mater, 2010, 22: 2985–2997

    Article  CAS  PubMed  Google Scholar 

  8. Görl D, Zhang X, Würthner F. Angew Chem Int Ed, 2012, 51: 6328–6348

    Article  CAS  Google Scholar 

  9. Park S, Kwon JE, Kim SH, Seo J, Chung K, Park SY, Jang DJ, Milián Medina B, Gierschner J, Park SY. J Am Chem Soc, 2009, 131: 14043–14049

    Article  CAS  PubMed  Google Scholar 

  10. Li N, Oida S, Tulevski GS, Han SJ, Hannon JB, Sadana DK, Chen TC. Nat Commun, 2013, 4: 2294

    Article  PubMed  CAS  Google Scholar 

  11. Zhang G, Palmer GM, Dewhirst MW, Fraser CL. Nat Mater, 2009, 8: 747–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fateminia SMA, Mao Z, Xu S, Yang Z, Chi Z, Liu B. Angew Chem, 2017, 129: 12328–12332

    Article  Google Scholar 

  13. Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492: 234–238

    Article  CAS  PubMed  Google Scholar 

  14. Yang Z, Mao Z, Xie Z, Zhang Y, Liu S, Zhao J, Xu J, Chi Z, Aldred MP. Chem Soc Rev, 2017, 46: 915–1016

    Article  CAS  PubMed  Google Scholar 

  15. Wong MY, Zysman-Colman E. Adv Mater, 2017, 29: 1605444

    Article  CAS  Google Scholar 

  16. Goushi K, Yoshida K, Sato K, Adachi C. Nat Photon, 2012, 6: 253–258

    Article  CAS  Google Scholar 

  17. Zhang X, Dong H, Hu W. Adv Mater, 2018, 30: 1801048

    Article  CAS  Google Scholar 

  18. Fardy M, Yang P. Nature, 2008, 451: 408–409

    Article  CAS  PubMed  Google Scholar 

  19. Cui QH, Zhao YS, Yao J. J Mater Chem, 2012, 22: 4136–4140

    Article  CAS  Google Scholar 

  20. Yu Y, Tao YC, Zou SN, Li ZZ, Yan CC, Zhuo MP, Wang XD, Liao LS. Sci China Chem, 2020, 63: 1477–1482

    Article  CAS  Google Scholar 

  21. Ye X, Liu Y, Guo Q, Han Q, Ge C, Cui S, Zhang L, Tao X. Nat Commun, 2019, 10: 761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun MJ, Liu Y, Yan Y, Li R, Shi Q, Zhao YS, Zhong YW, Yao J. J Am Chem Soc, 2018, 140: 4269–4278

    Article  CAS  PubMed  Google Scholar 

  23. Tang J, Huo Z, Brittman S, Gao H, Yang P. Nat Nanotech, 2011, 6: 568–572

    Article  CAS  Google Scholar 

  24. Zhang C, Zheng JY, Zhao YS, Yao J. AdvMater, 2011, 23: 1380–1384

    CAS  Google Scholar 

  25. Wu JJ, Li ZZ, Zhuo MP, Wu Y, Wang XD, Liao LS, Jiang L. Adv Opt Mater, 2018, 6: 1701300

    Article  CAS  Google Scholar 

  26. Yan D, Delori A, Lloyd GO, Friščić T, Day GM, Jones W, Lu J, Wei M, Evans DG, Duan X. Angew Chem Int Ed, 2011, 50: 12483–12486

    Article  CAS  Google Scholar 

  27. Liu K, Lei Y, Fu H. Chem Mater, 2020, 32: 5162–5172

    Article  CAS  Google Scholar 

  28. Zhang J, Geng H, Virk TS, Zhao Y, Tan J, Di C, Xu W, Singh K, Hu W, Shuai Z, Liu Y, Zhu D. Adv Mater, 2012, 24: 2603–2607

    Article  CAS  PubMed  Google Scholar 

  29. Park SK, Varghese S, Kim JH, Yoon SJ, Kwon OK, An BK, Gierschner J, Park SY. J Am Chem Soc, 2013, 135: 4757–4764

    Article  CAS  PubMed  Google Scholar 

  30. D’Andrade BW, Forrest SR. Adv Mater, 2004, 16: 1585–1595

    Article  CAS  Google Scholar 

  31. Xue J, Xu J, Ren J, Liang Q, Ou Q, Wang R, Shuai Z, Qiao J. Sci China Chem, 2021, 64: 1786–1795

    Article  CAS  Google Scholar 

  32. Zhao J, Yan Y, Gao Z, Du Y, Dong H, Yao J, Zhao YS. Nat Commun, 2019, 10: 870

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fan F, Turkdogan S, Liu Z, Shelhammer D, Ning CZ. Nat Nanotech, 2015, 10: 796–803

    Article  CAS  Google Scholar 

  34. Sun Y, Giebink NC, Kanno H, Ma B, Thompson ME, Forrest SR. Nature, 2006, 440: 908–912

    Article  CAS  PubMed  Google Scholar 

  35. Ravindran E, Ananthakrishnan SJ, Varathan E, Subramanian V, Somanathan N. J Mater Chem C, 2015, 3: 4359–4371

    Article  CAS  Google Scholar 

  36. Ravindran E, Somanathan N. J Mater Chem C, 2017, 5: 4763–4774

    Article  CAS  Google Scholar 

  37. Duan C, Xin Y, Wang Z, Zhang J, Han C, Xu H. Chem Sci, 2022, 13: 159–169

    Article  CAS  Google Scholar 

  38. Zhu W, Zheng R, Zhen Y, Yu Z, Dong H, Fu H, Shi Q, Hu W. J Am Chem Soc, 2015, 137: 11038–11046

    Article  CAS  PubMed  Google Scholar 

  39. Cui QH, Peng Q, Luo Y, Jiang Y, Yan Y, Wei C, Shuai Z, Sun C, Yao J, Zhao YS. Sci Adv, 2018, 4: eaap9861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Zhao G, Dong H, Liao Q, Jiang J, Luo Y, Fu H, Hu W. Nat Commun, 2018, 9: 4790–4797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Del Guerzo A, Olive AGL, Reichwagen J, Hopf H, Desvergne JP. J Am Chem Soc, 2005, 127: 17984–17985

    Article  CAS  PubMed  Google Scholar 

  42. Liao Q, Fu H, Yao J. Adv Mater, 2009, 21: 4153–4157

    Article  CAS  Google Scholar 

  43. Ning Y, Yang J, Si H, Wu H, Zheng X, Qin A, Tang BZ. Sci China Chem, 2021, 64: 739–744

    Article  CAS  Google Scholar 

  44. Zhuo MP, Su Y, Qu YK, Chen S, He GP, Yuan Y, Liu H, Tao YC, Wang XD, Liao LS. Adv Mater, 2021, 33: 2102719

    Article  CAS  Google Scholar 

  45. Borys NJ, Walter MJ, Huang J, Talapin DV, Lupton JM. Science, 2010, 330: 1371–1374

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21971185, 51821002), and this project is also funded by the Collaborative Innovation Center of Suzhou Nano Science and Technology (CIC-Nano), and by the “111” Project of the State Administration of Foreign Experts Affairs of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Dong Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

11426_2021_1214_MOESM1_ESM.docx

Organic white-light sources: multiscale construction of organic luminescent materials from molecular to macroscopic level

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Wang, XD., Zhuo, MP. et al. Organic white-light sources: multiscale construction of organic luminescent materials from molecular to macroscopic level. Sci. China Chem. 65, 740–745 (2022). https://doi.org/10.1007/s11426-021-1214-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1214-8

Keywords

Navigation