Skip to main content
Log in

Tuning the electric transport behavior of AgCrSe2 by intrinsic defects

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The two-dimensional (2D) structure often leads to unusual phenomena for the impact of confined mean free path of carrier scattering. As a quasi-2D layered material, AgCrSe2 has a liquid-like phonon behavior for its unstable Ag atoms at service temperature, leading to the promising candidate for thermoelectricity and fast ionic conductor. However, the inferior electronic performance constrains its application prospects as a functional semiconductor, which provides broad opportunity to tune its electric behaviors by defect chemistry. In this work, we revealed abundant electric transport behaviors of AgCrSe2 with different types of intrinsic defects. For example, the AgCrSe2 changes from Anderson insulator to metal when Se defects become prevailing and the magnetoresistance alters its sign depending on the relative ratio of Ag and Cr defects. Our results reported here can give salutary boosting on regulating the electric properties of ternary transition metal selenide by defect chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yuan H, Wang H, Cui Y. Acc Chem Res, 2015, 48: 81–90

    Article  CAS  Google Scholar 

  2. Li B, Wang H, Kawakita Y, Zhang Q, Feygenson M, Yu HL, Wu D, Ohara K, Kikuchi T, Shibata K, Yamada T, Ning XK, Chen Y, He JQ, Vaknin D, Wu RQ, Nakajima K, Kanatzidis MG. Nat Mater, 2018, 17: 226–230

    Article  CAS  Google Scholar 

  3. Van Der Lee A, Wiegers GA. J Solid State Chem, 1989, 82: 216–224

    Article  CAS  Google Scholar 

  4. Gascoin F, Maignan A. Chem Mater, 2011, 23: 2510–2513

    Article  CAS  Google Scholar 

  5. Ding J, Niedziela JL, Bansal D, Wang J, He X, May AF, Ehlers G, Abernathy DL, Said A, Alatas A, Ren Y, Arya G, Delaire O. Proc Natl Acad Sci USA, 2020, 117: 3930–3937

    Article  CAS  Google Scholar 

  6. Wu D, Huang S, Feng D, Li B, Chen Y, Zhang J, He J. Phys Chem Chem Phys, 2016, 18: 23872–23878

    Article  CAS  Google Scholar 

  7. Bhattacharya S, Basu R, Bhatt R, Singh A, Sen S, Aswal DK, Gupta SK. AIP Conf Proc, 2012, 1447: 1021–1022

    Article  CAS  Google Scholar 

  8. Tang M, Chen Z, Yin C, Lin L, Ren D, Liu B, Kang B, Ang R. Appl Phys Lett, 2020, 116: 163901

    Article  CAS  Google Scholar 

  9. Peng J, Liu Y, Pan Y, Wu J, Su Y, Guo Y, Wu X, Wu C, Xie Y. J Am Chem Soc, 2020, 142: 18645–18651

    Article  CAS  Google Scholar 

  10. Bell LE. Science, 2008, 321: 1457–1461

    Article  CAS  Google Scholar 

  11. Kim SI, Lee KH, Mun HA, Kim HS, Hwang SW, Roh JW, Yang DJ, Shin WH, Li XS, Lee YH, Snyder GJ, Kim SW. Science, 2015, 348: 109–114

    Article  CAS  Google Scholar 

  12. Zhao LD, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid VP, Uher C, Snyder GJ, Wolverton C, Kanatzidis MG. Science, 2016, 351: 141–144

    Article  CAS  Google Scholar 

  13. Shi X, Chen L. Nat Mater, 2016, 15: 691–692

    Article  CAS  Google Scholar 

  14. Liu Y, Zhou M, He J. Scripta Mater, 2016, 111: 39–43

    Article  CAS  Google Scholar 

  15. Kimerling LC. MRS Bull, 1991, 16: 42–47

    Article  Google Scholar 

  16. Tuller HL, Bishop SR. Annu Rev Mater Res, 2011, 41: 369–398

    Article  CAS  Google Scholar 

  17. Wang H, Zhang J, Hang X, Zhang X, Xie J, Pan B, Xie Y. Angew Chem, 2015, 127: 1211–1215

    Article  Google Scholar 

  18. Yano R, Sasagawa T. Cryst Growth Des, 2016, 16: 5618–5623

    Article  CAS  Google Scholar 

  19. Bongers PF, Van Bruggen CF, Koopstra J, Omloo WPFAM, Wiegers GA, Jellinek F. J Phys Chem Solids, 1968, 29: 977–984

    Article  CAS  Google Scholar 

  20. Damay F, Petit S, Rols S, Braendlein M, Daou R, Elkaïm E, Fauth F, Gascoin F, Martin C, Maignan A. Sci Rep, 2016, 6: 1–7

    Article  Google Scholar 

  21. Engelsman FMR, Wiegers GA, Jellinek F, Van Laar B. J Solid State Chem, 1973, 6: 574–582

    Article  CAS  Google Scholar 

  22. Gautam UK, Seshadri R, Vasudevan S, Maignan A. Solid State Commun, 2002, 122: 607–612

    Article  CAS  Google Scholar 

  23. Gagor A, Pietraszko A, Gulay L. Int Union Crystallogr, 2012, 68: S239

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U1832142), the National Key R&D Program of China (2018YFB0703602), the Youth Innovation Promotion Association CAS (Y202092), the Fundamental Research Funds for the Central University (WK2340000094), China Postdoctoral Science Foundation (2019TQ0293, 2020M671868), and the National Synchrotron Radiation Laboratory Joint funds of University of Science and Technology of China (KY2340000114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Xiao.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, Y., Bai, W., Wang, S. et al. Tuning the electric transport behavior of AgCrSe2 by intrinsic defects. Sci. China Chem. 64, 1970–1975 (2021). https://doi.org/10.1007/s11426-021-1071-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1071-4

Keywords

Navigation