Skip to main content
Log in

Late-stage azolation of benzylic C‒H bonds enabled by electrooxidation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The installation of azoles via C–H/N–H cross-coupling is significantly underdeveloped, particularly in benzylic C–H azolation due to the requirement for external chemical oxidants and the challenge in controlling the site- and chemo-selectivity. Herein, a late-stage azolation of benzylic C‒H bonds enabled by electrooxidation is described, which proceeds in an undivided cell under mild, catalyst- and chemical-oxidant-free reaction conditions. The strategy empowers the C‒H azolation on primary, secondary, and even challenging tertiary benzylic positions selectively. The remarkable synthetic utility of our approach is highlighted by its easy scalability without overoxidation of products and ample scope with valuable functional groups. The approach can be directly used to install benzyl and azole motifs on highly functionalized drug molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmidt B, Schieffer B. J Med Chem, 2003, 46: 2261–2270

    Article  Google Scholar 

  2. Breschi MC, Calderone V, Digiacomo M, Martelli A, Martinotti E, Minutolo F, Rapposelli S, Balsamo A. J Med Chem, 2004, 47: 5597–5600

    Article  Google Scholar 

  3. Zhang HZ, Gan LL, Wang H, Zhou CH. Mini-Rev Med Chem, 2017, 17: 122–166

    Article  Google Scholar 

  4. Das P, Delost MD, Qureshi MH, Smith DT, Njardarson JT. J Med Chem, 2019, 62: 4265–4311

    Article  Google Scholar 

  5. Al-Azmi A, George P, El-Dusouqui OME. J Heterocycl Chem, 2007, 44: 515–520

    Article  Google Scholar 

  6. Vitaku E, Smith DT, Njardarson JT. J Med Chem, 2014, 57: 10257–10274

    Article  Google Scholar 

  7. Kong D, Moon PJ, Bsharat O, Lundgren RJ. Angew Chem Int Ed, 2020, 59: 1313–1319

    Article  Google Scholar 

  8. Fan X, Lei T, Liu Z, Yang XL, Cheng YY, Liang G, Chen B, Tung CH, Wu LZ. Eur J Org Chem, 2020, 2020: 1551–1558

    Article  Google Scholar 

  9. Stivanin ML, Fernandes AAG, Silva AF, Okada Jr CY, Jurberg ID. Adv Synth Catal, 2020, 362: 1106–1111

    Article  Google Scholar 

  10. Wang K, Chen P, Ji D, Zhang X, Xu G, Sun J. Angew Chem Int Ed, 2018, 57: 12489–12493

    Article  Google Scholar 

  11. Sun HL, Yang F, Ye WT, Wang JJ, Zhu R. ACS Catal, 2020, 10: 4983–4989

    Article  Google Scholar 

  12. Yang Y, Yu Y, Wang Y, Zhang Q, Li D. Tetrahedron, 2018, 74: 1085–1091

    Article  Google Scholar 

  13. Yamamoto C, Takamatsu K, Hirano K, Miura M. J Org Chem, 2016, 81: 7675–7684

    Article  Google Scholar 

  14. Ye L, Tian Y, Meng X, Gu Q, Liu X. Angew Chem Int Ed, 2020, 59: 1129–1133

    Article  Google Scholar 

  15. Prier CK, Zhang RK, Buller AR, Brinkmann-Chen S, Arnold FH. Nat Chem, 2017, 9: 629–634

    Article  Google Scholar 

  16. Clark JR, Feng K, Sookezian A, White MC. Nat Chem, 2018, 10: 583–591

    Article  Google Scholar 

  17. Song C, Dong X, Yi H, Chiang CW, Lei A. ACS Catal, 2018, 8: 2195–2199

    Article  Google Scholar 

  18. Wang X, Li C, Zhang Y, Zhang B, Sun K. Org Biomol Chem, 2019, 17: 8364–8368

    Article  Google Scholar 

  19. Pandey G, Laha R, Singh D. J Org Chem, 2016, 81: 7161–7171

    Article  Google Scholar 

  20. Xue Q, Xie J, Li H, Cheng Y, Zhu C. Chem Commun, 2013, 49: 3700–3702

    Article  Google Scholar 

  21. Xia Q, Chen W, Qiu H. J Org Chem, 2011, 76: 7577–7582

    Article  Google Scholar 

  22. For recent reviews on organic electrosynthesis: (a) Meyer TH, Finger LH, Gandeepan P, Ackermann L. Trends Chem, 2019, 1: 63–76

  23. Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem Rev, 2018, 118: 6706–6765

    Article  Google Scholar 

  24. Tang S, Liu Y, Lei A. Chem, 2018, 4: 27–45

    Article  Google Scholar 

  25. Hou ZW, Mao ZY, Xu HC. Synlett, 2017, 28: 1867–1872

    Article  Google Scholar 

  26. Cardoso DSP, Šljukić B, Santos DMF, Sequeira CAC. Org Process Res Dev, 2017, 21: 1213–1226

    Article  Google Scholar 

  27. Horn EJ, Rosen BR, Baran PS. ACS Cent Sci, 2016, 2: 302–308

    Article  Google Scholar 

  28. Francke R, Little RD. Chem Soc Rev, 2014, 43: 2492–2521

    Article  Google Scholar 

  29. Francke R. Beilstein J Org Chem, 2014, 10: 2858–2873

    Article  Google Scholar 

  30. Yoshida J, Kataoka K, Horcajada R, Nagaki A. Chem Rev, 2008, 108: 2265–2299

    Article  Google Scholar 

  31. Jutand A. Chem Rev, 2008, 108: 2300–2347

    Article  Google Scholar 

  32. Minteer SD, Baran P. Acc Chem Res, 2020, 53: 545–546

    Article  Google Scholar 

  33. Kingston C, Palkowitz MD, Takahira Y, Vantourout JC, Peters BK, Kawamata Y, Baran PS. Acc Chem Res, 2020, 53: 72–83

    Article  Google Scholar 

  34. Röckl JL, Pollok D, Franke R, Waldvogel SR. Acc Chem Res, 2020, 53: 45–61

    Article  Google Scholar 

  35. Siu JC, Fu N, Lin S. Acc Chem Res, 2020, 53: 547–560

    Article  Google Scholar 

  36. Jiao KJ, Xing YK, Yang QL, Qiu H, Mei TS. Acc Chem Res, 2020, 53: 300–310

    Article  Google Scholar 

  37. Leech MC, Lam K. Acc Chem Res, 2020, 53: 121–134

    Article  Google Scholar 

  38. Yamamoto K, Kuriyama M, Onomura O. Acc Chem Res, 2020, 53: 105–120

    Article  Google Scholar 

  39. Ackermann L. Acc Chem Res, 2020, 53: 84–104

    Article  Google Scholar 

  40. Xiong P, Xu HC. Acc Chem Res, 2019, 52: 3339–3350

    Article  Google Scholar 

  41. Meyer TH, Choi I, Tian C, Ackermann L. Chem, 2020, 6: 2484–2496

    Article  Google Scholar 

  42. Zhang S, Samanta RC, Del Vecchio A, Ackermann L. Chem Eur J, 2020, 26: 10936–10947

    Article  Google Scholar 

  43. Wang H, Gao X, Lv Z, Abdelilah T, Lei A. Chem Rev, 2019, 119: 6769–6787

    Article  Google Scholar 

  44. Yuan Y, Lei A. Acc Chem Res, 2019, 52: 3309–3324

    Article  Google Scholar 

  45. Feng P, Ma G, Chen X, Wu X, Lin L, Liu P, Chen T. Angew Chem Int Ed, 2019, 58: 8400–8404

    Article  Google Scholar 

  46. Qiu Y, Struwe J, Meyer TH, Oliveira JCA, Ackermann L. Chem Eur J, 2018, 24: 12784–12789

    Article  Google Scholar 

  47. Petrosyan VA, Burasov AV, Vakhotina TS. Russ Chem Bull, 2005, 54: 1197–1202

    Article  Google Scholar 

  48. Hu K, Niyazymbetov ME, Evans DH. Tetrahedron Lett, 1995, 36: 7027–7030

    Article  Google Scholar 

  49. de Robillard G, Makni O, Cattey H, Andrieu J, Devillers CH. Green Chem, 2015, 17: 4669–4679

    Article  Google Scholar 

  50. Wan Z, Wang D, Yang Z, Zhang H, Wang S, Lei A. Green Chem, 2020, 22: 3742–3747

    Article  Google Scholar 

  51. Wu J, Zhou Y, Zhou Y, Chiang CW, Lei A. ACS Catal, 2017, 7: 8320–8323

    Article  Google Scholar 

  52. Shao X, Tian L, Wang Y. Eur J Org Chem, 2019, 2019(25): 4089–4094

    Article  Google Scholar 

  53. Yang YZ, Song RJ, Li JH. Org Lett, 2019, 21: 3228–3231

    Article  Google Scholar 

  54. Zeng C, Zhang N, Lam CM, Little RD. Org Lett, 2012, 14: 1314–1317

    Article  Google Scholar 

  55. Xiong P, Zhao HB, Fan XT, Jie LH, Long H, Xu P, Liu ZJ, Wu ZJ, Cheng J, Xu HC. Nat Commun, 2020, 11: 2706–2714

    Article  Google Scholar 

  56. Morofuji T, Shimizu A, Yoshida J. J Am Chem Soc, 2014, 136: 4496–4499

    Article  Google Scholar 

  57. Lee BJ, DeGlopper KS, Yoon TP. Angew Chem Int Ed, 2020, 59: 197–202

    Article  Google Scholar 

  58. Wang H, Liang K, Xiong W, Samanta S, Li W, Lei A. Sci Adv, 2020, 6: eaaz0590

    Article  Google Scholar 

  59. Baciocchi E, Bietti M, Lanzalunga O. Acc Chem Res, 2000, 33: 243–251

    Article  Google Scholar 

  60. Xu Z, Li Y, Mo G, Zheng Y, Zeng S, Sun PH, Ruan Z. Org Lett, 2020, 22: 4016–4020

    Article  Google Scholar 

  61. Xu Z, Huang Z, Li Y, Kuniyil R, Zhang C, Ackermann L, Ruan Z. Green Chem, 2020, 22: 1099–1104

    Article  Google Scholar 

  62. Ruan Z, Huang Z, Xu Z, Mo G, Tian X, Yu XY, Ackermann L. Org Lett, 2019, 21: 1237–1240

    Article  Google Scholar 

  63. Li Y, Huang Z, Mo G, Jiang W, Zheng C, Feng P, Ruan Z. Chin J Chem, 2020, https://doi.org/10.1002/cjoc.202000586

  64. When we are preparing the manuscript, a similar elegant work was reported by Xu, see: (a) Hou Z, Liu D, Xiong P, Lai X, Song J, Xu H. Angew Chem Int Ed, 2021, 60: 2943–2947

  65. The methodology was mainly focused on amination of the secondary benzylic positions and less electronic benzylic substrates. Herein, our work mainly addressed the amination of electron-rich substrates with primary, secondary and tertiary benzylic positions The methodology was mainly focused on amination of the secondary benzylic positions and less electronic benzylic substrates. Herein, our work mainly addressed the amination of electron-rich substrates with primary, secondary and tertiary benzylic position

  66. Garrett C, Prasad K. Adv Synthesis Catal, 2004, 346: 889–900

    Article  Google Scholar 

  67. Caron S, Dugger RW, Ruggeri SG, Ragan JA, Ripin DHB. Chem Rev, 2006, 106: 2943–2989

    Article  Google Scholar 

  68. The anodic oxidation of 1a was mainly affected by the specific electrode area and current density, see: Pletcher D. Industrial Electrochemistry. London, New York: Chapmann and Hall. 2ed. 1990. 79–90

  69. Herein, the electrolyte of Et4NClO4 was employed for the CV test, because the CV of 2a was interfered by the oxidation of nBu4NHSO4

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21901052, 81872759), the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2019), the Guangzhou Education Bureau University Scientific Research Project (201831845) and the Guangdong Basic and Applied Basic Research Foundation (2020A1515010722).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhixiong Ruan, Pengju Feng or Ping-Hua Sun.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, Z., Huang, Z., Xu, Z. et al. Late-stage azolation of benzylic C‒H bonds enabled by electrooxidation. Sci. China Chem. 64, 800–807 (2021). https://doi.org/10.1007/s11426-020-9938-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9938-9

Keywords

Navigation