Skip to main content
Log in

Molecular dispersion enhances photovoltaic efficiency and thermal stability in quasi-bilayer organic solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In comparison to widely adopted bulk heterojunction (BHJ) structures for organic solar cells (OSC), exploiting the sequential deposition to form planar heterojunction (PHJ) structures enables to realize the favorable vertical phase separation to facilitate charge extraction and reduce charge recombination in OSCs. However, effective tunings on the power conversion efficiency (PCE) in PHJ-OSCs are still restrained by the currently available methods. Based on a polymeric donor PBDBT-2F (PBDBT=Poly [[4,8-bis [5-(2-ethylhexyl)-4-fluoro-2-thienyl]benzo [1,2-b:4,5-b′]dithiophene-2,6-diyl]-2,5-thiophenediyl [5,7-bis (2-ethylhexyl)-4,8-dioxo-4H,8H-benzo [1,2-c:4,5-c′]dithiophene-1,3-diyl]-2,5-thiophenediyl]) and a non-fullerene (NF) acceptor Y6, we proposed a strategy to improve the properties of photovoltaic performances in PHJ-based OSCs through dilute dispersions of the PBDBT-2F donor into the acceptor-dominant phase with the sequential film deposition. With the control of donor dispersions, the charge transport balance in the PHJ-OSCs is improved, leading to the expedited photocarrier sweep-out with reduced bimolecular charge recombination. As a result, a PCE of 15.4% is achieved in the PHJ-OSCs. Importantly, the PHJ solar cells with donor dispersions exhibit better thermal stability than corresponding BHJ devices, which is related to the better film morphology robustness and less affected charge sweep-out during the thermal aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng Z, Wang R, Yao H, Xie S, Zhang Y, Hou J, Zhou H, Tang Z. Nano Energy, 2018, 50: 169–175

    Article  CAS  Google Scholar 

  2. Liu T, Huo L, Chandrabose S, Chen K, Han G, Qi F, Meng X, Xie D, Ma W, Yi Y, Hodgkiss JM, Liu F, Wang J, Yang C, Sun Y. Adv Mater, 2018, 30: 1707353

    Article  CAS  Google Scholar 

  3. Che X, Li Y, Qu Y, Forrest SR. Nat Energy, 2018, 3: 422–427

    Article  CAS  Google Scholar 

  4. Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip HL, Cao Y, Chen Y. Science, 2018, 361: 1094–1098

    Article  CAS  PubMed  Google Scholar 

  5. Gao J, Wang J, An Q, Ma X, Hu Z, Xu C, Zhang X, Zhang F. Sci China Chem, 2020, 63: 83–91

    Article  CAS  Google Scholar 

  6. Chen M, Zhang Z, Li W, Cai J, Yu J, Spooner ELK, Kilbride RC, Li D, Du B, Gurney RS, Liu D, Tang W, Lidzey DG, Wang T. Sci China Chem, 2019, 62: 1221–1229

    Article  CAS  Google Scholar 

  7. Ma L, Xu Y, Zu Y, Liao Q, Xu B, An C, Zhang S, Hou J. Sci China Chem, 2020, 63: 21–27

    Article  CAS  Google Scholar 

  8. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science, 1995, 270: 1789–1791

    Article  CAS  Google Scholar 

  9. Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB. Nature, 1995, 376: 498–500

    Article  CAS  Google Scholar 

  10. Mornet S, Lambert O, Duguet E, Brisson A. Nano Lett, 2005, 5: 281–285

    Article  CAS  PubMed  Google Scholar 

  11. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F. Science, 1992, 258: 1474–1476

    Article  CAS  PubMed  Google Scholar 

  12. Oh SJ, Kim J, Mativetsky JM, Loo YL, Kagan CR. ACS Appl Mater Interfaces, 2016, 8: 28743–28749

    Article  CAS  PubMed  Google Scholar 

  13. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    Article  CAS  Google Scholar 

  14. Xu X, Feng K, Bi Z, Ma W, Zhang G, Peng Q. Adv Mater, 2019, 31: 1901872

    Article  CAS  Google Scholar 

  15. Cui Y, Yao H, Zhang J, Zhang T, Wang Y, Hong L, Xian K, Xu B, Zhang S, Peng J, Wei Z, Gao F, Hou J. Nat Commun, 2019, 10: 2515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Li C, Xie Y, Fan B, Han G, Yi Y, Sun Y. J Mater Chem C, 2018, 6: 4873–4877

    Article  CAS  Google Scholar 

  17. Wang T, Pearson AJ, Lidzey DG. J Mater Chem C, 2013, 1: 7266–7293

    Article  CAS  Google Scholar 

  18. Heeger AJ. Adv Mater, 2014, 26: 10–28

    Article  CAS  PubMed  Google Scholar 

  19. Zhao F, Wang C, Zhan X. Adv Energy Mater, 2018, 8: 1703147

    Article  CAS  Google Scholar 

  20. Na JY, Kim M, Park YD. J Phys Chem C, 2017, 121: 13930–13937

    Article  CAS  Google Scholar 

  21. Liu J, Han J, Liang Q, Xin J, Tang Y, Ma W, Yu X, Han Y. ACS Omega, 2018, 3: 7603–7612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ma W, Yang C, Gong X, Lee K, Heeger AJ. Adv Funct Mater, 2005, 15: 1617–1622

    Article  CAS  Google Scholar 

  23. Lee CK, Pao CW. J Phys Chem C, 2014, 118: 11224–11233

    Article  CAS  Google Scholar 

  24. Gaspar H, Figueira F, Pereira L, Mendes A, Viana JC, Bernardo G. Materials, 2018, 11: 2560

    Article  PubMed Central  CAS  Google Scholar 

  25. Guerrero A, Garcia-Belmonte G. Nano-Micro Lett, 2016, 9: 10

    Article  CAS  Google Scholar 

  26. Zhou K, Xin J, Ma W. ACS Energy Lett, 2019, 4: 447–455

    Article  CAS  Google Scholar 

  27. Chang JH, Wang HF, Lin WC, Chiang KM, Chen KC, Huang WC, Huang ZY, Meng HF, Ho RM, Lin HW. J Mater Chem A, 2014, 2: 13398–13406

    Article  CAS  Google Scholar 

  28. Wang Y, Zhan X. Adv Energy Mater, 2016, 6: 1600414

    Article  CAS  Google Scholar 

  29. Li H, Wang J. Appl Phys Lett, 2012, 101: 263901

    Article  CAS  Google Scholar 

  30. Lee KH, Schwenn PE, Smith ARG, Cavaye H, Shaw PE, James M, Krueger KB, Gentle IR, Meredith P, Burn PL. Adv Mater, 2011, 23: 766–770

    Article  CAS  PubMed  Google Scholar 

  31. Sun R, Guo J, Sun C, Wang T, Luo Z, Zhang Z, Jiao X, Tang W, Yang C, Li Y, Min J. Energy Environ Sci, 2019, 12: 384–395

    Article  CAS  Google Scholar 

  32. Huang L, Jiang P, Zhang Y, Zhang L, Yu Z, He Q, Zhou W, Tan L, Chen Y. ACS Appl Mater Interfaces, 2019, 11: 26213–26221

    Article  CAS  PubMed  Google Scholar 

  33. Scharber MC, Sariciftci NS. Prog Polym Sci, 2013, 38: 1929–1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ye L, Xiong Y, Chen Z, Zhang Q, Fei Z, Henry R, Heeney M, O’Connor BT, You W, Ade H. Adv Mater, 2019, 31: 1808153

    Article  CAS  Google Scholar 

  35. Xu Y, Yuan J, Liang S, Chen JD, Xia Y, Larson BW, Wang Y, Su GM, Zhang Y, Cui C, Wang M, Zhao H, Ma W. ACS Energy Lett, 2019, 4: 2277–2286

    Article  CAS  Google Scholar 

  36. Zhou K, Wu Y, Liu Y, Zhou X, Zhang L, Ma W. ACS Energy Lett, 2019, 4: 1057–1064

    Article  CAS  Google Scholar 

  37. Wang Y, Zhu Q, Naveed HB, Zhao H, Zhou K, Ma W. Adv Energy Mater, 2020, 10: 1903609

    Article  CAS  Google Scholar 

  38. Zhao Y, Wang G, Wang Y, Xiao T, Adil MA, Lu G, Zhang J, Wei Z. Sol RRL, 2019, 3: 1800333

    Article  CAS  Google Scholar 

  39. Coakley KM, McGehee MD. Chem Mater, 2004, 16: 4533–4542

    Article  CAS  Google Scholar 

  40. Menke SM, Cheminal A, Conaghan P, Ran NA, Greehnam NC, Bazan GC, Nguyen TQ, Rao A, Friend RH. Nat Commun, 2018, 9: 277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Menke SM, Ran NA, Bazan GC, Friend RH. Joule, 2018, 2: 25–35

    Article  CAS  Google Scholar 

  42. Nikolis VC, Benduhn J, Holzmueller F, Piersimoni F, Lau M, Zeika O, Neher D, Koerner C, Spoltore D, Vandewal K. Adv Energy Mater, 2017, 7: 1700855

    Article  CAS  Google Scholar 

  43. Zhang J, Futscher MH, Lami V, Kosasih FU, Cho C, Gu Q, Sadhanala A, Pearson AJ, Kan B, Divitini G, Wan X, Credgington D, Greenham NC, Chen Y, Ducati C, Ehrler B, Vaynzof Y, Friend RH, Bakulin AA. Adv Energy Mater, 2019, 9: 1902145

    Article  CAS  Google Scholar 

  44. Yan H, Tang Y, Sui X, Liu Y, Gao B, Liu X, Liu SF, Hou J, Ma W. ACS Energy Lett, 2019, 4: 1356–1363

    Article  CAS  Google Scholar 

  45. Sun R, Wu Q, Guo J, Wang T, Wu Y, Qiu B, Luo Z, Yang W, Hu Z, Guo J, Shi M, Yang C, Huang F, Li Y, Min J. Joule, 2020, 4: 407–419

    Article  CAS  Google Scholar 

  46. Qin Y, Zhang S, Xu Y, Ye L, Wu Y, Kong J, Xu B, Yao H, Ade H, Hou J. Adv Energy Mater, 2019, 9: 1901823

    Article  CAS  Google Scholar 

  47. Zhang X, Zhang D, Zhou Q, Wang R, Zhou J, Wang J, Zhou H, Zhang Y. Nano Energy, 2019, 56: 494–501

    Article  CAS  Google Scholar 

  48. Credgington D, Jamieson FC, Walker B, Nguyen TQ, Durrant JR. Adv Mater, 2012, 24: 2135–2141

    Article  CAS  PubMed  Google Scholar 

  49. Li C, Xia T, Song J, Fu H, Ryu HS, Weng K, Ye L, Woo HY, Sun Y. J Mater Chem A, 2019, 7: 1435–1441

    Article  CAS  Google Scholar 

  50. Riedel I, Parisi J, Dyakonov V, Lutsen L, Vanderzande D, Hummelen J. Adv Funct Mater, 2004, 14: 38–44

    Article  CAS  Google Scholar 

  51. Cowan SR, Roy A, Heeger AJ. Phys Rev B, 2010, 82: 245207

    Article  CAS  Google Scholar 

  52. Kyaw AKK, Wang DH, Gupta V, Leong WL, Ke L, Bazan GC, Heeger AJ. ACS Nano, 2013, 7: 4569–4577

    Article  CAS  PubMed  Google Scholar 

  53. Proctor CM, Kuik M, Nguyen TQ. Prog Polym Sci, 2013, 38: 1941–1960

    Article  CAS  Google Scholar 

  54. Zhang T, Zhao X, Yang D, Tian Y, Yang X. Adv Energy Mater, 2018, 8: 1701691

    Article  CAS  Google Scholar 

  55. Zhang Q, Kan B, Liu F, Long G, Wan X, Chen X, Zuo Y, Ni W, Zhang H, Li M, Hu Z, Huang F, Cao Y, Liang Z, Zhang M, Russell TP, Chen Y. Nat Photon, 2014, 9: 35–41

    Article  CAS  Google Scholar 

  56. He Z, Zhong C, Huang X, Wong WY, Wu H, Chen L, Su S, Cao Y. Adv Mater, 2011, 23: 4636–4643

    Article  CAS  PubMed  Google Scholar 

  57. Liu W, Zhang J, Zhou Z, Zhang D, Zhang Y, Xu S, Zhu X. Adv Mater, 2018, 30: 1800403

    Article  CAS  Google Scholar 

  58. Maurano A, Shuttle CG, Hamilton R, Ballantyne AM, Nelson J, Zhang W, Heeney M, Durrant JR. J Phys Chem C, 2011, 115: 5947–5957

    Article  CAS  Google Scholar 

  59. Zheng Z, Hu Q, Zhang S, Zhang D, Wang J, Xie S, Wang R, Qin Y, Li W, Hong L, Liang N, Liu F, Zhang Y, Wei Z, Tang Z, Russell TP, Hou J, Zhou H. Adv Mater, 2018, 30: 1801801

    Article  CAS  Google Scholar 

  60. Mihailetchi VD, Koster LJA, Hummelen JC, Blom PWM. Phys Rev Lett, 2004, 93: 216601

    Article  CAS  PubMed  Google Scholar 

  61. Li Z, Gao F, Greenham NC, McNeill CR. Adv Funct Mater, 2011, 21: 1419–1431

    Article  CAS  Google Scholar 

  62. Perdigón-Toro L, Zhang H, Markina A, Yuan J, Hosseini SM, Wolff CM, Zuo G, Stolterfoht M, Zou Y, Gao F, Andrienko D, Shoaee S, Neher D. Adv Mater, 2020, 32: 1906763

    Article  CAS  Google Scholar 

  63. Karki A, Vollbrecht J, Dixon AL, Schopp N, Schrock M, Reddy GNM, Nguyen TQ. Adv Mater, 2019, 31: 1903868

    Article  CAS  Google Scholar 

  64. Gledhill SE, Scott B, Gregg BA. J Mater Res, 2005, 20: 3167–3179

    Article  CAS  Google Scholar 

  65. Manda PK, Ramaswamy S, Dutta S. IEEE Trans Electron Devices, 2018, 65: 184–190

    Article  CAS  Google Scholar 

  66. Clymer DA, Matin MA. Application of Mott-Gurney law to model the current-voltage relationship of PPV/CN-PPV with a thin-metal anode buffer. In: Proceedings of SPIE—The International Society for Optical Engineering. Volum 5907. Optics and Photonics. San Diego, 2005

    Google Scholar 

  67. Stolterfoht M, Armin A, Philippa B, Neher D. J Phys Chem Lett, 2016, 7: 4716–4721

    Article  CAS  PubMed  Google Scholar 

  68. Loiudice A, Rizzo A, Latini G, Nobile C, de Giorgi M, Gigli G. Sol Energy Mater Sol Cells, 2012, 100: 147–152

    Article  CAS  Google Scholar 

  69. Kim M, Lee J, Jo SB, Sin DH, Ko H, Lee H, Lee SG, Cho K. J Mater Chem A, 2016, 4: 15522–15535

    Article  CAS  Google Scholar 

  70. Benninghoven A. Angew Chem Int Ed Engl, 1994, 33: 1023–1043

    Article  Google Scholar 

  71. Cha H, Fish G, Luke J, Alraddadi A, Lee HH, Zhang W, Dong Y, Limbu S, Wadsworth A, Maria IP, Francas L, Sou HL, Du T, Kim JS, McLachlan MA, McCulloch I, Durrant JR. Adv Energy Mater, 2019, 9: 1901254

    Article  CAS  Google Scholar 

  72. Ie Y, Morikawa K, Karakawa M, Kotadiya NB, Wetzelaer GJAH, Blom PWM, Aso Y. J Mater Chem A, 2017, 5: 19773–19780

    Article  CAS  Google Scholar 

  73. Lin Y, Zhao F, Wu Y, Chen K, Xia Y, Li G, Prasad SKK, Zhu J, Huo L, Bin H, Zhang ZG, Guo X, Zhang M, Sun Y, Gao F, Wei Z, Ma W, Wang C, Hodgkiss J, Bo Z, Inganäs O, Li Y, Zhan X. Adv Mater, 2017, 29: 1604155

    Article  CAS  Google Scholar 

  74. Cnops K, Rand BP, Cheyns D, Heremans P. Appl Phys Lett, 2012, 101: 143301

    Article  CAS  Google Scholar 

  75. Barito A, Sykes ME, Bilby D, Amonoo J, Jin Y, Morris SE, Green PF, Kim J, Shtein M. J Appl Phys, 2013, 113: 203110

    Article  CAS  Google Scholar 

  76. Shoaee S, Stolterfoht M, Neher D. Adv Energy Mater, 2018, 8: 1703355

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21875012, 21674006, 21773045), the National Key Research and Development Program of China (2017YFA0206600), the Chinese Academy of Science (100 Top Young Scientists Program), and the program of “Academic Excellence Foundation of BUAA for PhD Students”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Zhang.

Ethics declarations

The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, Y., Zhang, D. et al. Molecular dispersion enhances photovoltaic efficiency and thermal stability in quasi-bilayer organic solar cells. Sci. China Chem. 64, 116–126 (2021). https://doi.org/10.1007/s11426-020-9837-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9837-y

Keywords

Navigation