Abstract
The incorporation of heavy atoms into molecular backbone is an extremely straightforward strategy for fine-tuning the optoelectronic properties of organic semiconductors. However, it is rarely studied in n-type small molecules. Herein, by selenium substitution of NDI3HU-DTYM2, two Se-decorated core-expanded naphthalene diimides (NDI) derivatives DTYM-NDI3HU-DSYM (1) and NDI3HU-DSYM2 (2) were synthesized. In comparison with the reference S-containing compound NDI3HU-DTYM2, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of 1 and 2 were fine-tuned with AHOMO of about 0.2 eV, ALUMO of 0.1 eV and the narrowed HOMO-LUMO gaps. More surprisingly, the as-spun organic thin film transistors (OTFTs) based on 1 and 2 both showed μe,sat values as high as 1.0 cm2 V−1 s−1, which are 2-fold higher than that of NDI3HU-DTYM2 with the same device structure and measurement conditions. In addition, the single crystal OFET devices based on Se-containing compound NDI2BO-DSYM2 showed a high value of 1.30 cm V−1 s−1. The molecular packing of NDI2BO-DSYM2 in single crystals (two dimensional supramolecular structure formed by intermolecular Se⋯Se interactions) is quite different from that of a S-containing compound NDI-DTYM2 (one dimensional supramolecular structure formed by intermolecular π-π stacking). Therefore, the Se substitution can cause dramatic change about molecular stacking model, giving rise to high n-type OTFT performance. Our results demonstrated an effective strategy of the heavy atom effect for designing novel organic semiconductors.
Similar content being viewed by others
References
Dou L, You J, Hong Z, Xu Z, Li G, Street RA, Yang Y. Adv Mater, 2013, 25: 6642–6671
Buerle P, Becher J, Lau J, Mark P. Sulfur-Containing Oligomers. Electronic Materials: The Oligomer Approach. Wiley Online Library, 1998. 105–233
Jiang W, Li Y, Wang Z. Chem Soc Rev, 2013, 42: 6113–6127
Zhang W, Liu Y, Yu G. Adv Mater, 2014, 26: 6898–6904
Allard S, Forster M, Souharce B, Thiem H, Scherf U. Angew Chem Int Ed, 2008, 47: 4070–4098
Shen H, Di CA, Zhu D. Sci China Chem, 2017, 60: 437–449
Liu Y, Yu G, Liu YQ. Sci China Chem, 2010, 53: 779–791
Takimiya K, Otsubo T. Phosphorus, Sulfur, and Silicon and the Related Elements. Abingdon: Taylor & Francis Inc., 2005. 873–881
Hollinger J, Gao D, Seferos DS. Isr J Chem, 2014, 54: 440–453
Mishra SP, Javier AE, Zhang R, Liu J, Belot JA, Osaka I, McCullough RD. J Mater Chem, 2011, 21: 1551–1561
Li L, Hollinger J, Jahnke AA, Petrov S, Seferos DS. Chem Sci, 2011, 2: 2306–2310
Patra A, Wijsboom YH, Leitus G, Bendikov M. Chem Mater, 2011, 23: 896–906
Hollinger J, Jahnke AA, Coombs N, Seferos DS. J Am Chem Soc, 2010, 132: 8546–8547
Chiu CC, Wu HC, Lu C, Chen JY, Chen WC. Polym Chem, 2015, 6: 3660–3670
Patra A, Kumar R, Chand S. Isr J Chem, 2014, 54: 621–641
Kronemeijer AJ, Gili E, Shahid M, Rivnay J, Salleo A, Heeney M, Sirringhaus H. Adv Mater, 2012, 24: 1558–1565
Chen Z, Lemke H, Albert-Seifried S, Caironi M, Nielsen MM, Heeney M, Zhang W, McCulloch I, Sirringhaus H. Adv Mater, 2010, 22: 2371–2375
Ballantyne A, Chen L, Nelson J, Bradley D, Astuti Y, Maurano A, Shuttle C, Durrant J, Heeney M, Duffy W, McCulloch I. Adv Mater, 2007, 19: 4544–4547
Li PF, Schon TB, Seferos DS. Angew Chem Int Ed, 2015, 54: 9361–9366
Yu S, Peng A, Zhang S, Huang H. Sci China Chem, 2018, 61: 1359–1367
Lee J, Han AR, Yu H, Shin TJ, Yang C, Oh JH. J Am Chem Soc, 2013, 135: 9540–9547
Kang I, Yun HJ, Chung DS, Kwon SK, Kim YH. J Am Chem Soc, 2013, 135: 14896–14899
Dou L, Chang WH, Gao J, Chen CC, You J, Yang Y. Adv Mater, 2013, 25: 825–831
Lee WH, Son SK, Kim K, Lee SK, Shin WS, Moon SJ, Kang IN. Macromolecules, 2012, 45: 1303–1312
Zhou N, Facchetti A. Mater Today, 2018, 21: 377–390
Meng D, Sun D, Zhong C, Liu T, Fan B, Huo L, Li Y, Jiang W, Choi H, Kim T, Kim JY, Sun Y, Wang Z, Heeger AJ. J Am Chem Soc, 2016, 138: 375–380
Liang Y, Lan S, Deng P, Zhou D, Guo Z, Chen H, Zhan H. ACS Appl Mater Interfaces, 2018, 10: 32397–32403
Kolhe NB, Lee H, Kuzuhara D, Yoshimoto N, Koganezawa T, Jenekhe SA. Chem Mater, 2018, 30: 6540–6548
Kolhe NB, Tran DK, Lee H, Kuzuhara D, Yoshimoto N, Koganezawa T, Jenekhe SA. ACS Energy Lett, 2019, 4: 1162–1170
Angelova A, Moradpour A, Auban-Senzier P, Akaaboune NE, Pasquier C. Chem Mater, 2000, 12: 2306–2310
Beno MA, Blackman GS, Williams JM, Bechgaard K. Inorg Chem, 1982, 21: 3860–3862
Chesney A, Bryce MR, Chalton MA, Batsanov AS, Howard JAK, Fabre JM, Binet L, Chakroune S. J Org Chem, 1996, 61: 2877–2881
Hu Y, Gao X, Di C, Yang X, Zhang F, Liu Y, Li H, Zhu D. Chem Mater, 2011, 23: 1204–1215
Zhang F, Hu Y, Schuettfort T, Di C, Gao X, McNeill CR, Thomsen L, Mannsfeld SCB, Yuan W, Sirringhaus H, Zhu D. J Am Chem Soc, 2013, 135: 2338–2349
Hu Y. The Design, Synthesis and Property Study of n-type Organic Semiconductors Based on Naphthalene Diimides Fused with Sulfur Hetercycles. Dissertation for the Doctoral Degree. Beijing: The University of Chinese Academy of Sciences, 2013. 40–41
Jensen KA, Henriksen L, Wennerbeck I, Solymosy F, Shimizu A. Acta Chem Scand, 1970, 24: 3213–3229
Gao X, Qiu W, Yang X, Liu Y, Wang Y, Zhang H, Qi T, Liu Y, Lu K, Du C, Shuai Z, Yu G, Zhu D. Org Lett, 2007, 9: 3917–3920
Gao X, Di C, Hu Y, Yang X, Fan H, Zhang F, Liu Y, Li H, Zhu D. J Am Chem Soc, 2010, 132: 3697–3699
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09. Revision A.02. Wallingford CT: Gaussian, Inc., 2009
Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas JL. Chem Rev, 2007, 107: 926–952
de Boer RWI, Gershenson ME, Morpurgo AF, Podzorov V. Phys Stat Sol, 2004, 201: 1302–1331
Knipp D, Street RA, Völkel A, Ho J. J Appl Phys, 2003, 93: 347–355
Gleiter R, Haberhauer G, Werz DB, Rominger F, Bleiholder C. Chem Rev, 2018, 118: 2010–2041
Acknowledgements
This work was supported by the National Natural Science Foundation of China (21522209, 21790362, 21502218), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB12010100) and the Science and Technology Commission of Shanghai Municipality (19XD1424700, 18JC1410600).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest The authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Han, W., Wang, Z., Hu, Y. et al. Selenium-containing core-expanded naphthalene diimides for high performance n-type organic semiconductors. Sci. China Chem. 63, 1182–1190 (2020). https://doi.org/10.1007/s11426-020-9792-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11426-020-9792-3