Skip to main content
Log in

Selenium-containing core-expanded naphthalene diimides for high performance n-type organic semiconductors

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The incorporation of heavy atoms into molecular backbone is an extremely straightforward strategy for fine-tuning the optoelectronic properties of organic semiconductors. However, it is rarely studied in n-type small molecules. Herein, by selenium substitution of NDI3HU-DTYM2, two Se-decorated core-expanded naphthalene diimides (NDI) derivatives DTYM-NDI3HU-DSYM (1) and NDI3HU-DSYM2 (2) were synthesized. In comparison with the reference S-containing compound NDI3HU-DTYM2, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of 1 and 2 were fine-tuned with AHOMO of about 0.2 eV, ALUMO of 0.1 eV and the narrowed HOMO-LUMO gaps. More surprisingly, the as-spun organic thin film transistors (OTFTs) based on 1 and 2 both showed μe,sat values as high as 1.0 cm2 V−1 s−1, which are 2-fold higher than that of NDI3HU-DTYM2 with the same device structure and measurement conditions. In addition, the single crystal OFET devices based on Se-containing compound NDI2BO-DSYM2 showed a high value of 1.30 cm V−1 s−1. The molecular packing of NDI2BO-DSYM2 in single crystals (two dimensional supramolecular structure formed by intermolecular Se⋯Se interactions) is quite different from that of a S-containing compound NDI-DTYM2 (one dimensional supramolecular structure formed by intermolecular π-π stacking). Therefore, the Se substitution can cause dramatic change about molecular stacking model, giving rise to high n-type OTFT performance. Our results demonstrated an effective strategy of the heavy atom effect for designing novel organic semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dou L, You J, Hong Z, Xu Z, Li G, Street RA, Yang Y. Adv Mater, 2013, 25: 6642–6671

    CAS  PubMed  Google Scholar 

  2. Buerle P, Becher J, Lau J, Mark P. Sulfur-Containing Oligomers. Electronic Materials: The Oligomer Approach. Wiley Online Library, 1998. 105–233

  3. Jiang W, Li Y, Wang Z. Chem Soc Rev, 2013, 42: 6113–6127

    CAS  PubMed  Google Scholar 

  4. Zhang W, Liu Y, Yu G. Adv Mater, 2014, 26: 6898–6904

    CAS  PubMed  Google Scholar 

  5. Allard S, Forster M, Souharce B, Thiem H, Scherf U. Angew Chem Int Ed, 2008, 47: 4070–4098

    CAS  Google Scholar 

  6. Shen H, Di CA, Zhu D. Sci China Chem, 2017, 60: 437–449

    CAS  Google Scholar 

  7. Liu Y, Yu G, Liu YQ. Sci China Chem, 2010, 53: 779–791

    CAS  Google Scholar 

  8. Takimiya K, Otsubo T. Phosphorus, Sulfur, and Silicon and the Related Elements. Abingdon: Taylor & Francis Inc., 2005. 873–881

    Google Scholar 

  9. Hollinger J, Gao D, Seferos DS. Isr J Chem, 2014, 54: 440–453

    CAS  Google Scholar 

  10. Mishra SP, Javier AE, Zhang R, Liu J, Belot JA, Osaka I, McCullough RD. J Mater Chem, 2011, 21: 1551–1561

    CAS  Google Scholar 

  11. Li L, Hollinger J, Jahnke AA, Petrov S, Seferos DS. Chem Sci, 2011, 2: 2306–2310

    CAS  Google Scholar 

  12. Patra A, Wijsboom YH, Leitus G, Bendikov M. Chem Mater, 2011, 23: 896–906

    CAS  Google Scholar 

  13. Hollinger J, Jahnke AA, Coombs N, Seferos DS. J Am Chem Soc, 2010, 132: 8546–8547

    CAS  PubMed  Google Scholar 

  14. Chiu CC, Wu HC, Lu C, Chen JY, Chen WC. Polym Chem, 2015, 6: 3660–3670

    CAS  Google Scholar 

  15. Patra A, Kumar R, Chand S. Isr J Chem, 2014, 54: 621–641

    CAS  Google Scholar 

  16. Kronemeijer AJ, Gili E, Shahid M, Rivnay J, Salleo A, Heeney M, Sirringhaus H. Adv Mater, 2012, 24: 1558–1565

    CAS  PubMed  Google Scholar 

  17. Chen Z, Lemke H, Albert-Seifried S, Caironi M, Nielsen MM, Heeney M, Zhang W, McCulloch I, Sirringhaus H. Adv Mater, 2010, 22: 2371–2375

    CAS  PubMed  Google Scholar 

  18. Ballantyne A, Chen L, Nelson J, Bradley D, Astuti Y, Maurano A, Shuttle C, Durrant J, Heeney M, Duffy W, McCulloch I. Adv Mater, 2007, 19: 4544–4547

    CAS  Google Scholar 

  19. Li PF, Schon TB, Seferos DS. Angew Chem Int Ed, 2015, 54: 9361–9366

    CAS  Google Scholar 

  20. Yu S, Peng A, Zhang S, Huang H. Sci China Chem, 2018, 61: 1359–1367

    CAS  Google Scholar 

  21. Lee J, Han AR, Yu H, Shin TJ, Yang C, Oh JH. J Am Chem Soc, 2013, 135: 9540–9547

    CAS  PubMed  Google Scholar 

  22. Kang I, Yun HJ, Chung DS, Kwon SK, Kim YH. J Am Chem Soc, 2013, 135: 14896–14899

    CAS  PubMed  Google Scholar 

  23. Dou L, Chang WH, Gao J, Chen CC, You J, Yang Y. Adv Mater, 2013, 25: 825–831

    CAS  PubMed  Google Scholar 

  24. Lee WH, Son SK, Kim K, Lee SK, Shin WS, Moon SJ, Kang IN. Macromolecules, 2012, 45: 1303–1312

    CAS  Google Scholar 

  25. Zhou N, Facchetti A. Mater Today, 2018, 21: 377–390

    CAS  Google Scholar 

  26. Meng D, Sun D, Zhong C, Liu T, Fan B, Huo L, Li Y, Jiang W, Choi H, Kim T, Kim JY, Sun Y, Wang Z, Heeger AJ. J Am Chem Soc, 2016, 138: 375–380

    CAS  PubMed  Google Scholar 

  27. Liang Y, Lan S, Deng P, Zhou D, Guo Z, Chen H, Zhan H. ACS Appl Mater Interfaces, 2018, 10: 32397–32403

    CAS  PubMed  Google Scholar 

  28. Kolhe NB, Lee H, Kuzuhara D, Yoshimoto N, Koganezawa T, Jenekhe SA. Chem Mater, 2018, 30: 6540–6548

    CAS  Google Scholar 

  29. Kolhe NB, Tran DK, Lee H, Kuzuhara D, Yoshimoto N, Koganezawa T, Jenekhe SA. ACS Energy Lett, 2019, 4: 1162–1170

    CAS  Google Scholar 

  30. Angelova A, Moradpour A, Auban-Senzier P, Akaaboune NE, Pasquier C. Chem Mater, 2000, 12: 2306–2310

    CAS  Google Scholar 

  31. Beno MA, Blackman GS, Williams JM, Bechgaard K. Inorg Chem, 1982, 21: 3860–3862

    CAS  Google Scholar 

  32. Chesney A, Bryce MR, Chalton MA, Batsanov AS, Howard JAK, Fabre JM, Binet L, Chakroune S. J Org Chem, 1996, 61: 2877–2881

    CAS  PubMed  Google Scholar 

  33. Hu Y, Gao X, Di C, Yang X, Zhang F, Liu Y, Li H, Zhu D. Chem Mater, 2011, 23: 1204–1215

    CAS  Google Scholar 

  34. Zhang F, Hu Y, Schuettfort T, Di C, Gao X, McNeill CR, Thomsen L, Mannsfeld SCB, Yuan W, Sirringhaus H, Zhu D. J Am Chem Soc, 2013, 135: 2338–2349

    CAS  PubMed  Google Scholar 

  35. Hu Y. The Design, Synthesis and Property Study of n-type Organic Semiconductors Based on Naphthalene Diimides Fused with Sulfur Hetercycles. Dissertation for the Doctoral Degree. Beijing: The University of Chinese Academy of Sciences, 2013. 40–41

    Google Scholar 

  36. Jensen KA, Henriksen L, Wennerbeck I, Solymosy F, Shimizu A. Acta Chem Scand, 1970, 24: 3213–3229

    CAS  Google Scholar 

  37. Gao X, Qiu W, Yang X, Liu Y, Wang Y, Zhang H, Qi T, Liu Y, Lu K, Du C, Shuai Z, Yu G, Zhu D. Org Lett, 2007, 9: 3917–3920

    CAS  PubMed  Google Scholar 

  38. Gao X, Di C, Hu Y, Yang X, Fan H, Zhang F, Liu Y, Li H, Zhu D. J Am Chem Soc, 2010, 132: 3697–3699

    CAS  PubMed  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09. Revision A.02. Wallingford CT: Gaussian, Inc., 2009

    Google Scholar 

  40. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas JL. Chem Rev, 2007, 107: 926–952

    CAS  PubMed  Google Scholar 

  41. de Boer RWI, Gershenson ME, Morpurgo AF, Podzorov V. Phys Stat Sol, 2004, 201: 1302–1331

    CAS  Google Scholar 

  42. Knipp D, Street RA, Völkel A, Ho J. J Appl Phys, 2003, 93: 347–355

    CAS  Google Scholar 

  43. Gleiter R, Haberhauer G, Werz DB, Rominger F, Bleiholder C. Chem Rev, 2018, 118: 2010–2041

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21522209, 21790362, 21502218), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB12010100) and the Science and Technology Commission of Shanghai Municipality (19XD1424700, 18JC1410600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Congwu Ge or Xike Gao.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, W., Wang, Z., Hu, Y. et al. Selenium-containing core-expanded naphthalene diimides for high performance n-type organic semiconductors. Sci. China Chem. 63, 1182–1190 (2020). https://doi.org/10.1007/s11426-020-9792-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9792-3

Keywords