Skip to main content
Log in

Express and sensitive detection of multiple miRNAs via DNA cascade reactors functionalized photonic crystal array

  • Articles
  • SPECIAL ISSUE: Celebrating the 100th Anniversary of Chemical Sciences in Nanjing University
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Array based detection techniques with fluorescence signal reading is a powerful tool for multiple targets analysis. However, when applied fluorescence array for microRNA detection, time-consuming multi-steps surface signal amplification is usually required due to the low abundance of microRNA in total RNA expressions, which impairs detection efficiency and limits its application in point of care test (POCT) manner. Herein, DNA cascade reactors (DCRs) functionalized photonic crystal (PC) array was fabricated for express and sensitive detections of miRNA-21 and miRNA-155. DCRs were assembled by interval conjugation of self-quenched hairpin DNA probes to single strand DNA nanowire synthesized by rolling circle amplification, which generated cascade DNA hybridization reactions in response to target miRNA with instant fluorescence recovery signal. PC array patterns with multi-structure colors further amplified fluorescence with their respective photonic bandgaps (PBGs) matching with the emission peaks of fluorescence molecules labelled on DCRs. The as-prepared DCRs functionalized PC array demonstrated express and sensitive simultaneous detections of miRNA-21 and miRNA-155 with hundreds fM detection limits only in 15 min, and was successfully applied in fast quantifications of low abundance miRNAs from cell lysates and spiked miRNAs from human serum, which would hold great potential for disease diagnosis and therapeutic effect monitoring with a POCT manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bushati N, Cohen SM. Annu Rev Cell Dev Biol, 2007, 23: 175–205

    CAS  PubMed  Google Scholar 

  2. Filipowicz W, Bhattacharyya SN, Sonenberg N. Nat Rev Genet, 2008, 9: 102–114

    CAS  Google Scholar 

  3. Guo H, Ingolia NT, Weissman JS, Bartel DP. Nature, 2010, 466: 835–840

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. Nature, 2008, 455: 64–71

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Croce CM. Nat Rev Genet, 2009, 10: 704–714

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Krol J, Loedige I, Filipowicz W. Nat Rev Genet, 2010, 11: 597–610

    CAS  PubMed  Google Scholar 

  7. Lu Y, Zhao X, Liu Q, Li C, Graves-Deal R, Cao Z, Singh B, Franklin JL, Wang J, Hu H, Wei T, Yang M, Yeatman TJ, Lee E, Saito-Diaz K, Hinger S, Patton JG, Chung CH, Emmrich S, Klusmann JH, Fan D, Coffey RJ. Nat Med, 2017, 23: 1331–1341

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Small EM, Olson EN. Nature, 2011, 469: 336–342

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Pasquardini L, Potrich C, Vaghi V, Lunelli L, Frascella F, Descrovi E, Pirri CF, Pederzolli C. Talanta, 2016, 150: 699–704

    CAS  PubMed  Google Scholar 

  10. Wang C, Li Z. Mater Chem Front, 2017, 1: 2174–2194

    CAS  Google Scholar 

  11. Xue Q, Kong Y, Wang H, Jiang W. Chem Commun, 2017, 53: 10772–10775

    CAS  Google Scholar 

  12. Stejskal D, Hlozankova M, Sigutova R, Andelova K, Svagera Z, Svestak M. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2019, 163: 39–44

    PubMed  Google Scholar 

  13. Krepelkova I, Mrackova T, Izakova J, Dvorakova B, Chalupova L, Mikulik R, Slaby O, Bartos M, Ruzicka V. Biotechniques, 2019, 66: 277–284

    CAS  PubMed  Google Scholar 

  14. Benes V, Castoldi M. Methods, 2010, 50: 244–249

    CAS  PubMed  Google Scholar 

  15. Cheng Y, Zhang X, Li Z, Jiao X, Wang Y, Zhang Y. Angew Chem Int Ed, 2009, 48: 3268–3272

    CAS  Google Scholar 

  16. Choi W, Yeom SY, Kim J, Jung S, Jung S, Shim TS, Kim SK, Kang JY, Lee SH, Cho IJ, Choi J, Choi N. Biosens Bioelectron, 2018, 101: 235–244

    CAS  PubMed  Google Scholar 

  17. Dirks RM, Pierce NA. Proc Natl Acad Sci USA, 2004, 101: 15275–15278

    CAS  PubMed  Google Scholar 

  18. Bi S, Yue S, Zhang S. Chem Soc Rev, 2017, 46: 4281–4298

    CAS  PubMed  Google Scholar 

  19. Li X, Yao D, Zhou J, Zhou X, Sun X, Wei B, Li C, Zheng B, Liang H. Sci China Chem, 2020, 63: 92–98

    CAS  Google Scholar 

  20. Chen J, Liu B, Song X, Tong P, Yang H, Zhang L. Sci China Chem, 2015, 58: 1906–1911

    CAS  Google Scholar 

  21. Chao J, Li Z, Li J, Peng H, Su S, Li Q, Zhu C, Zuo X, Song S, Wang L, Wang L. Biosens Bioelectron, 2016, 81: 92–96

    CAS  PubMed  Google Scholar 

  22. Yin F, Liu H, Li Q, Gao X, Yin Y, Liu D. Anal Chem, 2016, 88: 4600–4604

    CAS  PubMed  Google Scholar 

  23. Yao Q, Wang Y, Wang J, Chen S, Liu H, Jiang Z, Zhang X, Liu S, Yuan Q, Zhou X. ACS Nano, 2018, 12: 6777–6783

    CAS  PubMed  Google Scholar 

  24. Wei Q, Huang J, Li J, Wang J, Yang X, Liu J, Wang K. Chem Sci, 2018, 9: 7802–7808

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ren K, Zhang Y, Zhang X, Liu Y, Yang M, Ju H. ACS Nano, 2018, 12: 10797–10806

    CAS  PubMed  Google Scholar 

  26. Zhu X, Ye H, Liu JW, Yu RQ, Jiang JH. Anal Chem, 2018, 90: 13188–13192

    CAS  PubMed  Google Scholar 

  27. Ren K, Xu Y, Liu Y, Yang M, Ju H. ACS Nano, 2018, 12: 263–271

    CAS  PubMed  Google Scholar 

  28. Hou J, Zhang H, Yang Q, Li M, Song Y, Jiang L. Angew Chem Int Ed, 2014, 53: 5791–5795

    CAS  Google Scholar 

  29. Wu L, Wang Y, He R, Zhang Y, He Y, Wang C, Lu Z, Liu Y, Ju H. Anal Chim Acta, 2019, 1080: 206–214

    CAS  PubMed  Google Scholar 

  30. Zhao Y, Zhao X, Gu Z. Adv Funct Mater, 2010, 20: 2970–2988

    CAS  Google Scholar 

  31. Ye XZ, Qi LM. Sci China Chem, 2014, 57: 58–69

    CAS  Google Scholar 

  32. Zhao Y, Xie Z, Gu H, Zhu C, Gu Z. Chem Soc Rev, 2012, 41: 3297–3317

    CAS  PubMed  Google Scholar 

  33. Fenzl C, Hirsch T, Wolfbeis OS. Angew Chem Int Ed, 2014, 53: 3318–3335

    CAS  Google Scholar 

  34. Bian F, Wu J, Wang H, Sun L, Shao C, Wang Y, Li Z, Wang X, Zhao Y. Small, 2018, 14: 1803551

    Google Scholar 

  35. Wang Y, Shang L, Bian F, Zhang X, Wang S, Zhou M, Zhao Y. Small, 2019, 15: 1900056

    Google Scholar 

  36. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Ménard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM. Cancer Res, 2005, 65: 7065–7070

    CAS  PubMed  Google Scholar 

  37. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2009. CA: a cancer journal for clinicians, 2009, 59(4): 225–249

    Google Scholar 

  38. Wang W, Gu B, Liang L, Hamilton W. J Phys Chem B, 2003, 107: 3400–3404

    CAS  Google Scholar 

  39. Zhang T, Zhang Q, Ge J, Goebl J, Sun M, Yan Y, Liu Y, Chang C, Guo J, Yin Y. J Phys Chem C, 2009, 113: 3168–3175

    CAS  Google Scholar 

  40. Luo Z, Hong RY, Xie HD, Feng WG. Powder Tech, 2012, 218: 23–30

    CAS  Google Scholar 

  41. Seo JH, Shin DS, Mukundan P, Revzin A. Colloids Surfs B-Biointerfaces, 2012, 98: 1–6

    CAS  Google Scholar 

  42. Meng X, Hu J, Chao Z, Liu Y, Ju H, Cheng Q. ACS Appl Mater Interfaces, 2018, 10: 1324–1333

    CAS  PubMed  Google Scholar 

  43. Pei X, Yin H, Lai T, Zhang J, Liu F, Xu X, Li N. Anal Chem, 2018, 90: 1376–1383

    CAS  PubMed  Google Scholar 

  44. Liu Q, Wang D, Yuan M, He BF, Li J, Mao C, Wang GS, Qian H. Chem Sci, 2018, 9: 7562–7568

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21635005, 21605083, 21974064), the National Research Foundation for Thousand Youth Talents Plan of China, Specially-appointed Professor Foundation of Jiangsu Province, and Program for innovative Talents and Entrepreneurs of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Liu.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, Y., Zhang, Y. et al. Express and sensitive detection of multiple miRNAs via DNA cascade reactors functionalized photonic crystal array. Sci. China Chem. 63, 731–740 (2020). https://doi.org/10.1007/s11426-020-9712-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9712-y

Keywords

Navigation