Skip to main content
Log in

Highly stable and efficient perovskite solar cells produced via high-boiling point solvents and additive engineering synergistically

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The active absorber layer plays a crucial role in a perovskite solar cell. Herein, we used high boiling point γ-butyrolactone (GBL) as the main solvent, Pb(SCN)2 and dimethyl sulfoxide (DMSO) as an effective additive in the FA0.83MA0.17Cs0.05PbI(3−x)Brx solution to improve the quality of perovskite films. The GBL will delay the crystallization speed of the perovskite, and lead to the grain growth assisted by thiocyanate. The synergistic effect of the solvent engineering and additive engineering is beneficial to the slow growth of the grain size. It is found that the addition of Pb(SCN)2 increases Gibbs free energy barrier for the nucleation, leading to the formation of fewer nuclei, which results in a high quality of perovskite absorbers with larger grains and smoother surfaces. The synergistic effect of solvents and Pb(SCN)2 on the morphology and photovoltaic performances is investigated. Compared to devices without the additive, the efficiency of devices with 5% Pb(SCN)2-doped FA0.83MA0.17Cs0.05PbI(3−x)Brx is raised to 19.01% from 15.21%. We believe this breakthrough regarding high efficiency perovskite solar cells will help for their transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kojima A, Teshima K, Shirai Y, Miyasaka T. J Am Chem Soc, 2009, 131: 6050–6051

    Article  CAS  Google Scholar 

  2. Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Grätzel M, Park NG. Sci Rep, 2012, 2: 591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Yang D, Yang R, Zhang J, Yang Z, (Frank) Liu S, Li C. Energy Environ Sci, 2015, 8: 3208–3214

    Article  CAS  Google Scholar 

  4. Yang Z, Cai B, Zhou B, Yao T, Yu W, Liu SF, Zhang WH, Li C. Nano Energy, 2015, 15: 670–678

    Article  CAS  Google Scholar 

  5. Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S, Seo J, Seok SI. Nature, 2015, 517: 476–480

    Article  CAS  PubMed  Google Scholar 

  6. Zhou H, Chen Q, Li G, Luo S, Song T, Duan HS, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345: 542–546

    Article  CAS  PubMed  Google Scholar 

  7. Xing G, Mathews N, Sun S, Lim SS, Lam YM, Grätzel M, Mhaisalkar S, Sum TC. Science, 2013, 342: 344–347

    Article  CAS  PubMed  Google Scholar 

  8. Chen Q, Zhou H, Hong Z, Luo S, Duan HS, Wang HH, Liu Y, Li G, Yang Y. J Am Chem Soc, 2014, 136: 622–625

    Article  CAS  PubMed  Google Scholar 

  9. Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M. Nature, 2013, 499: 316–319

    Article  CAS  PubMed  Google Scholar 

  10. Bi D, Moon SJ, Häggman L, Boschloo G, Yang L, Johansson EMJ, Nazeeruddin MK, Grätzel M, Hagfeldt A. RSC Adv, 2013, 3: 18762

    Article  CAS  Google Scholar 

  11. Heo JH, Im SH, Noh JH, Mandal TN, Lim CS, Chang JA, Lee YH, Kim H, Sarkar A, Nazeeruddin MK, Grätzel M, Seok SI. Nat Photon, 2013, 7: 486–491

    Article  CAS  Google Scholar 

  12. Zi W, Jin Z, Liu S, Xu B. J Energy Chem, 2018, 27: 971–989

    Article  Google Scholar 

  13. https://www.nrel.gov/pv/cell-efficiency.html

  14. Xu Z, Chen M, Liu SF. Sci China Chem, 2019, 62: 866–874

    Article  CAS  Google Scholar 

  15. Lu J, Chen SC, Zheng Q. Sci China Chem, 2019, 62: 1044–1050

    Article  CAS  Google Scholar 

  16. Xiao Z, Dong Q, Bi C, Shao Y, Yuan Y, Huang J. Adv Mater, 2014, 26: 6503–6509

    Article  CAS  PubMed  Google Scholar 

  17. Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J. Science, 2015, 347: 967–970

    Article  CAS  PubMed  Google Scholar 

  18. Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Herz LM, Petrozza A, Snaith HJ. Science, 2013, 342: 341–344

    Article  CAS  PubMed  Google Scholar 

  19. Lin Q, Armin A, Nagiri RCR, Burn PL, Meredith P. Nat Photon, 2015, 9: 106–112

    Article  CAS  Google Scholar 

  20. Chen W, Chen H, Xu G, Xue R, Wang S, Li Y, Li Y. Joule, 2019, 3: 191–204

    Article  CAS  Google Scholar 

  21. Feng J, Zhu X, Yang Z, Zhang X, Niu J, Wang Z, Zuo S, Priya S, Liu SF, Yang D. Adv Mater, 2018, 30: 1801418

    Article  CAS  Google Scholar 

  22. Liang PW, Liao CY, Chueh CC, Zuo F, Williams ST, Xin XK, Lin J, Jen AKY. Adv Mater, 2014, 26: 3748–3754

    Article  CAS  PubMed  Google Scholar 

  23. Ahn N, Son DY, Jang IH, Kang SM, Choi M, Park NG. J Am Chem Soc, 2015, 137: 8696–8699

    Article  CAS  PubMed  Google Scholar 

  24. Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ. Energy Environ Sci, 2014, 7: 982–988

    Article  CAS  Google Scholar 

  25. Wu CG, Chiang CH, Tseng ZL, Nazeeruddin MK, Hagfeldt A, Grätzel M. Energy Environ Sci, 2015, 8: 2725–2733

    Article  CAS  Google Scholar 

  26. Ke W, Xiao C, Wang C, Saparov B, Duan HS, Zhao D, Xiao Z, Schulz P, Harvey SP, Liao W, Meng W, Yu Y, Cimaroli AJ, Jiang CS, Zhu K, Al-Jassim M, Fang G, Mitzi DB, Yan Y. Adv Mater, 2016, 28: 5214–5221

    Article  CAS  PubMed  Google Scholar 

  27. Yu Y, Wang C, Grice CR, Shrestha N, Chen J, Zhao D, Liao W, Cimaroli AJ, Roland PJ, Ellingson RJ, Yan Y. ChemSusChem, 2016, 9: 3288–3297

    Article  CAS  PubMed  Google Scholar 

  28. Quarti C, Mosconi E, De Angelis F. Chem Mater, 2014, 26: 6557–6569

    Article  CAS  Google Scholar 

  29. Eperon GE, Bryant D, Troughton J, Stranks SD, Johnston MB, Watson T, Worsley DA, Snaith HJ. J Phys Chem Lett, 2015, 6: 129–138

    Article  CAS  PubMed  Google Scholar 

  30. Yuan DX, Gorka A, Xu MF, Wang ZK, Liao LS. Phys Chem Chem Phys, 2015, 17: 19745–19750

    Article  CAS  PubMed  Google Scholar 

  31. Shi B, Yao X, Hou F, Guo S, Li Y, Wei C, Ding Y, Li Y, Zhao Y, Zhang X. J Phys Chem C, 2018, 122: 21269–21276

    Article  CAS  Google Scholar 

  32. Yi C, Luo J, Meloni S, Boziki A, Ashari-Astani N, Grätzel C, Zakeeruddin SM, Röthlisberger U, Grätzel M. Energy Environ Sci, 2016, 9: 656–662

    Article  CAS  Google Scholar 

  33. Zhao Y, Li Q, Zhou W, Hou Y, Zhao Y, Fu R, Yu D, Liu X, Zhao Q. Sol RRL, 2019, 3: 1800296

    Article  CAS  Google Scholar 

  34. Zhou Z, Wang Z, Zhou Y, Pang S, Wang D, Xu H, Liu Z, Padture NP, Cui G. Angew Chem Int Ed, 2015, 54: 9705–9709

    Article  CAS  Google Scholar 

  35. Raga SR, Ono LK, Qi Y. J Mater Chem A, 2016, 4: 2494–2500

    Article  CAS  Google Scholar 

  36. Kim MK, Jeon T, Park HI, Lee JM, Nam SA, Kim SO. CrystEngComm, 2016, 18: 6090–6095

    Article  CAS  Google Scholar 

  37. Chiang YH, Li MH, Cheng HM, Shen PS, Chen P. ACS Appl Mater Interfaces, 2017, 9: 2403–2409

    Article  CAS  PubMed  Google Scholar 

  38. Li J, Zhu H, Li X, Wang S, Xiao Y. IOP Conf Ser-Mater Sci Eng, 2019, 556: 012022

    Article  CAS  Google Scholar 

  39. Chen Q, Zhou H, Song TB, Luo S, Hong Z, Duan HS, Dou L, Liu Y, Yang Y. Nano Lett, 2014, 14: 4158–4163

    Article  CAS  PubMed  Google Scholar 

  40. Song TB, Chen Q, Zhou H, Jiang C, Wang HH, (Michael) Yang Y, Liu Y, You J, Yang Y. J Mater Chem A, 2015, 3: 9032–9050

    Article  CAS  Google Scholar 

  41. Wei Q, Yang D, Yang Z, Ren X, Liu Y, Feng J, Zhu X, Liu SF. RSC Adv, 2016, 6: 56807–56811

    Article  CAS  Google Scholar 

  42. Wei Q, Yang Z, Yang D, Fu F, Liu SF. J Power Sources, 2019, 437: 226914

    Article  CAS  Google Scholar 

  43. Wang S, Dong W, Fang X, Zhang Q, Zhou S, Deng Z, Tao R, Shao J, Xia R, Song C, Hu L, Zhu J. Nanoscale, 2016, 8: 6600–6608

    Article  CAS  PubMed  Google Scholar 

  44. Song TB, Chen Q, Zhou H, Luo S, Yang YM, You J, Yang Y. Nano Energy, 2015, 12: 494–500

    Article  CAS  Google Scholar 

  45. Zhu L, Shi J, Lv S, Yang Y, Xu X, Xu Y, Xiao J, Wu H, Luo Y, Li D, Meng Q. Nano Energy, 2015, 15: 540–548

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National University Research Fund (GK261001009), the National Natural Science Foundation of China (61604090, 21663030), the Shaanxi Provincial Science and Technology Plan Project (2020JM-546), the Doctoral research initial funding from Yan’an University (YDBK2017-14), and the Natural Science Foundation of Yan’an University (YDQ2018-15). D. Y. acknowledged the financial support from Air Force Office of Scientific Research (FA9550-18-1-0233) and STTR Program (Nanosonic).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Fu, Shengzhong (Frank) Liu or Dong Yang.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information

11426_2019_9727_MOESM1_ESM.docx

Highly stable and efficient perovskite solar cells produced via high-boiling point solvents and additive engineering synergistically

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Q., Ye, Z., Ren, X. et al. Highly stable and efficient perovskite solar cells produced via high-boiling point solvents and additive engineering synergistically. Sci. China Chem. 63, 818–826 (2020). https://doi.org/10.1007/s11426-019-9727-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9727-8

Key Words

Navigation