Skip to main content
Log in

Dynamic self-assembly of block copolymers regulated by time-varying building block composition via reversible chemical reaction

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Dynamic self-assembly processes occurring out of thermodynamic equilibrium underlie many forms of adaptive and intelligent behaviors in natural systems. Because of the continuous input of energy, the dynamic self-assembly provides the opportunity for creating structures that are unattainable in equilibrium state. In this paper, we propose a strategy in the dynamic self-assembly of amphiphilic block copolymers regulated by reversible chemical reaction. By time-dependently tuning the reaction direction in the simulations, the amphiphilicity of building block keeps changing periodically. Relying on this dynamic process, we can obtain exotic self-assembled vesicle with surface pores which is otherwise metastable in an equilibrium state. The effects induced by the type of chemical reaction and the reaction period are discussed. Only at short reaction period in suitable reversible reaction, novel self-assembly structure emerges. It is attributed to the competition of reaction and diffusion in the dynamic process, by which the local component of building blocks alters a lot, leading to large local surface tension resulting in the formation of perforated vesicle. In order to predict the assembled structure in a dynamic process, we build up the relationship between component ratio P, the diffusion effect parameter Pdiff and assembled structures. The dynamic self-assembly regulated by chemical reaction holds great promise as a rational strategy to realize exotic functional materials that are not easily obtained in equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang S. Nat Biotechnol, 2003, 21: 1171–1178

    CAS  PubMed  Google Scholar 

  2. Warren SC, Messina LC, Slaughter LS, Kamperman M, Zhou Q, Gruner SM, DiSalvo FJ, Wiesner U. Science, 2008, 320: 1748–1752

    CAS  PubMed  Google Scholar 

  3. Lee I. Langmuir, 2013, 29: 2476–2489

    CAS  PubMed  Google Scholar 

  4. Rösler A, Vandermeulen GWM, Klok HA. Adv Drug Deliver Rev, 2012, 64: 270–279

    Google Scholar 

  5. Whitesides GM, Grzybowski B. Science, 2002, 295: 2418–2421

    CAS  PubMed  Google Scholar 

  6. Tagliazucchi M, Olvera de la Cruz M, Szleifer I. Proc Natl Acad Sci USA, 2010, 107: 5300–5305

    CAS  PubMed  Google Scholar 

  7. Bates FS, Fredrickson GH. Annu Rev Phys Chem, 1990, 41: 525–557

    CAS  PubMed  Google Scholar 

  8. Tretiakov KV, Bishop KJM, Grzybowski BA. Soft Matter, 2009, 5: 1279–1284

    CAS  Google Scholar 

  9. Grzybowski BA, Wiles JA, Whitesides GM. Phys Rev Lett, 2003, 90: 083903

    PubMed  Google Scholar 

  10. Grzybowski BA, Wilmer CE, Kim J, Browne KP, Bishop KJM. Soft Matter, 2009, 5: 1110–1128

    CAS  Google Scholar 

  11. Braga C, Galindo A, Müller EA. J Chem Phys, 2014, 141: 154101

    PubMed  Google Scholar 

  12. Grzybowski BA, Fitzner K, Paczesny J, Granick S. Chem Soc Rev, 2017, 46: 5647–5678

    CAS  PubMed  Google Scholar 

  13. Fialkowski M, Bishop KJM, Klajn R, Smoukov SK, Campbell CJ, Grzybowski BA. J Phys Chem B, 2006, 110: 2482–2496

    CAS  PubMed  Google Scholar 

  14. Timonen JVI, Latikka M, Leibler L, Ras RHA, Ikkala O. Science, 2013, 341: 253–257

    CAS  PubMed  Google Scholar 

  15. Palacci J, Sacanna S, Steinberg AP, Pine DJ, Chaikin PM. Science, 2013, 339: 936–940

    CAS  PubMed  Google Scholar 

  16. Mann S. Nat Mater, 2009, 8: 781–792

    CAS  PubMed  Google Scholar 

  17. Boekhoven J, Hendriksen WE, Koper GJM, Eelkema R, van Esch JH. Science, 2015, 349: 1075–1079

    CAS  PubMed  Google Scholar 

  18. Sherman ZM, Swan JW. ACS Nano, 2019, 13: 764–771

    CAS  PubMed  Google Scholar 

  19. Omar AK, Wu Y, Wang ZG, Brady JF. ACS Nano, 2019, 13: 560–572

    CAS  PubMed  Google Scholar 

  20. Bochicchio D, Kwangmettatam S, Kudernac T, Pavan GM. ACS Nano, 2019, 13: 4322–4334

    CAS  PubMed  Google Scholar 

  21. Bonfio C, Caumes C, Duffy CD, Patel BH, Percivalle C, Tsanakopoulou M, Sutherland JD. J Am Chem Soc, 2019, 141: 3934–3939

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tagliazucchi M, Weiss EA, Szleifer I. Proc Natl Acad Sci USA, 2014, 111: 9751–9756

    CAS  PubMed  Google Scholar 

  23. Boekhoven J, Brizard AM, Kowlgi KNK, Koper GJM, Eelkema R, van Esch JH. Angew Chem Int Ed, 2010, 49: 4825–4828

    CAS  Google Scholar 

  24. Zhu G, Huang Z, Xu Z, Yan LT. Acc Chem Res, 2018, 51: 900–909

    CAS  PubMed  Google Scholar 

  25. Kakuta T, Takashima Y, Nakahata M, Otsubo M, Yamaguchi H, Harada A. Adv Mater, 2013, 25: 2849–2853

    CAS  PubMed  Google Scholar 

  26. Whittell GR, Hager MD, Schubert US, Manners I. Nat Mater, 2011, 10: 176–188

    CAS  PubMed  Google Scholar 

  27. Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L. Nature, 2008, 451: 977–980

    CAS  PubMed  Google Scholar 

  28. Yang Y, Chen P, Cao Y, Huang Z, Zhu G, Xu Z, Dai X, Chen S, Miao B, Yan LT. Langmuir, 2018, 34: 9477–9488

    CAS  PubMed  Google Scholar 

  29. Li Z, Yang J, Yu G, He J, Abliz Z, Huang F. Chem Commun, 2014, 50: 2841–2843

    CAS  Google Scholar 

  30. Español P, Warren P. Europhys Lett, 1995, 30: 191–196

    Google Scholar 

  31. Groot RD, Warren PB. J Chem Phys, 1997, 107: 4423–4435

    CAS  Google Scholar 

  32. Groot RD, Madden TJ. J Chem Phys, 1998, 108: 8713–8724

    CAS  Google Scholar 

  33. Groot RD, Madden TJ, Tildesley DJ. J Chem Phys, 1999, 110: 9739–9749

    CAS  Google Scholar 

  34. Liu H, Li M, Lu ZY, Zhang ZG, Sun CC. Macromolecules, 2009, 42: 2863–2872

    CAS  Google Scholar 

  35. Zhu YL, Liu H, Li ZW, Qian HJ, Milano G, Lu ZY. J Comput Chem, 2013, 34: 2197–2211

    CAS  PubMed  Google Scholar 

  36. Zhang L, Yu K, Eisenberg A. Science, 1996, 272: 1777–1779

    CAS  PubMed  Google Scholar 

  37. Li S, Yu C, Zhou Y. Sci China Chem, 2019, 62: 226–237

    CAS  Google Scholar 

  38. Arenas-Guerrero P, Delgado ÁV, Ramos A, Jiménez ML. Langmuir, 2019, 35: 687–694

    CAS  PubMed  Google Scholar 

  39. Shillcock JC, Lipowsky R. J Chem Phys, 2002, 117: 5048–5061

    CAS  Google Scholar 

  40. Jahnig F. Biophys J, 1996, 71: 1348–1349

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sherman ZM, Swan JW. ACS Nano, 2016, 10: 5260–5271

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (21833008, 21534004), and JLU-STIRT Program at Jilin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Yuan Lu.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

11426_2019_9589_MOESM1_ESM.pdf

Dynamic Self-assembly of Block Copolymers Regulated by Time-varying Building Block Composition via Reversible Chemical Reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Zhao, L., Zhang, K. et al. Dynamic self-assembly of block copolymers regulated by time-varying building block composition via reversible chemical reaction. Sci. China Chem. 62, 1666–1674 (2019). https://doi.org/10.1007/s11426-019-9589-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9589-x

Keywords

Navigation