Skip to main content
Log in

Self-supported metal sulphide nanocrystals-assembled nanosheets on carbon paper as efficient counter electrodes for quantum-dot-sensitized solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Developing efficient counter electrodes (CEs) and quantum dots made of earth-abundant and non-toxic elements is essential but still challenging for quantum dot-sensitized solar cells (QDSSCs). Here, we report a facile strategy to prepare self-supported and robust CoS2 and NiS nanocrystals-assembled nanosheets directly grown on carbon paper (MSx NS@CP) as efficient counter electrodes for QDSSCs. Such CEs integrate the merits of fast electron transfer from interconnected conductive scaffold, efficient mass transfer from hierarchically vertical nanosheet on 3D open substrate, as well as abundant highly active catalytic sites from metal sulphide nanocrystal units. As a result, QDDSCs based on such CoS2 NS@CP and NiS NS@CP CEs achieve a PCE of 8.88% and 7.53%, respectively. The detailed analyses suggest that CoS2 NS@CP has the highest catalytic activity and shows the lowest charger transfer resistance, leading to the highest PCE. These findings may inspire the design and exploration of other self-supported efficient CEs by integrating highly active catalysts onto 3D conductive networks for efficient QDSSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Selinsky RS, Ding Q, Faber MS, Wright JC, Jin S. Chem Soc Rev, 2013, 42: 2963–2985

    Article  CAS  PubMed  Google Scholar 

  2. Tian J, Cao G. J Phys Chem Lett, 2015, 6: 1859–1869

    Article  CAS  PubMed  Google Scholar 

  3. Sargent EH. Nat Photonics, 2012, 6: 133–135

    Article  CAS  Google Scholar 

  4. Semonin OE, Luther JM, Choi S, Chen HY, Gao J, Nozik AJ, Beard MC. Science, 2011, 334: 1530–1533

    Article  CAS  PubMed  Google Scholar 

  5. Liu S, Liu X, Han MY. Adv Funct Mater, 2016, 26: 8991–8998

    Article  CAS  Google Scholar 

  6. Wang S, Bi C, Yuan J, Zhang L, Tian J. ACS Energy Lett, 2018, 3: 245–251

    Article  CAS  Google Scholar 

  7. Kamat PV. J Phys Chem C, 2008, 112: 18737–18753

    Article  CAS  Google Scholar 

  8. Jiao S, Du J, Du Z, Long D, Jiang W, Pan Z, Li Y, Zhong X. J Phys Chem Lett, 2017, 8: 559–564

    Article  CAS  PubMed  Google Scholar 

  9. Yang Z, Chen CY, Liu CW, Chang HT. Chem Commun, 2010, 46: 5485–5487

    Article  CAS  Google Scholar 

  10. Du J, Du Z, Hu JS, Pan Z, Shen Q, Sun J, Long D, Dong H, Sun L, Zhong X, Wan LJ. J Am Chem Soc, 2016, 138: 4201–4209

    Article  CAS  PubMed  Google Scholar 

  11. Hwang I, Yong K. ChemElectroChem, 2015, 2: 634–653

    Article  CAS  Google Scholar 

  12. Ye M, Wen X, Zhang N, Guo W, Liu X, Lin C. J Mater Chem A, 2015, 3: 9595–9600

    Article  CAS  Google Scholar 

  13. Dao VD, Choi Y, Yong K, Larina LL, Choi HS. Carbon, 2015, 84: 383–389

    Article  CAS  Google Scholar 

  14. Sun JK, Jiang Y, Zhong X, Hu JS, Wan LJ. Nano Energy, 2017, 32: 130–156

    Article  CAS  Google Scholar 

  15. Yu XY, Lei BX, Kuang DB, Su CY. J Mater Chem, 2012, 22: 12058–12063

    Article  CAS  Google Scholar 

  16. Zhang H, Wang C, Peng W, Yang C, Zhong X. Nano Energy, 2016, 23: 60–69

    Article  CAS  Google Scholar 

  17. Yang Y, Zhu L, Sun H, Huang X, Luo Y, Li D, Meng Q. ACS Appl Mater Interfaces, 2012, 4: 6162–6168

    Article  CAS  PubMed  Google Scholar 

  18. Yang Z, Chen CY, Liu CW, Li CL, Chang HT. Adv Energy Mater, 2011, 1: 259–264

    Article  CAS  Google Scholar 

  19. Wang F, Dong H, Pan J, Li J, Li Q, Xu D. J Phys Chem C, 2014, 118: 19589–19598

    Article  CAS  Google Scholar 

  20. Xu J, Xue H, Yang X, Wei H, Li W, Li Z, Zhang W, Lee CS. Small, 2014, 10: 4754–4759

    Article  CAS  PubMed  Google Scholar 

  21. Yu H, Bao H, Zhao K, Du Z, Zhang H, Zhong X. J Phys Chem C, 2014, 118: 16602–16610

    Article  CAS  Google Scholar 

  22. Chen C, Ye M, Zhang N, Wen X, Zheng D, Lin C. J Mater Chem A, 2015, 3: 6311–6314

    Article  CAS  Google Scholar 

  23. Faber MS, Park K, Cabán-Acevedo M, Santra PK, Jin S. J Phys Chem Lett, 2013, 4: 1843–1849

    Article  CAS  PubMed  Google Scholar 

  24. Xiao J, Zeng X, Chen W, Xiao F, Wang S. Chem Commun, 2013, 49: 11734–11736

    Article  CAS  Google Scholar 

  25. Chen D, Zhang H, Liu Y, Li J. Energy Environ Sci, 2013, 6: 1362–1387

    Article  CAS  Google Scholar 

  26. Fan SQ, Fang B, Kim JH, Kim JJ, Yu JS, Ko J. Appl Phys Lett, 2010, 96: 063501

    Article  CAS  Google Scholar 

  27. Seol M, Youn DH, Kim JY, Jang JW, Choi M, Lee JS, Yong K. Adv Energy Mater, 2014, 4: 1300775

    Article  CAS  Google Scholar 

  28. Zhu Y, Cui H, Jia S, Zheng J, Yang P, Wang Z, Zhu Z. Electrochim Acta, 2016, 208: 288–295

    Article  CAS  Google Scholar 

  29. Jiang Y, Yu BB, Liu J, Li ZH, Sun JK, Zhong XH, Hu JS, Song WG, Wan LJ. Nano Lett, 2015, 15: 3088–3095

    Article  CAS  PubMed  Google Scholar 

  30. Jiang Y, Zhang X, Ge QQ, Yu BB, Zou YG, Jiang WJ, Song WG, Wan LJ, Hu JS. Nano Lett, 2014, 14: 365–372

    Article  CAS  PubMed  Google Scholar 

  31. Du Z, Pan Z, Fabregat-Santiago F, Zhao K, Long D, Zhang H, Zhao Y, Zhong X, Yu JS, Bisquert J. J Phys Chem Lett, 2016, 7: 3103–3111

    Article  CAS  PubMed  Google Scholar 

  32. Tang T, Jiang WJ, Niu S, Liu N, Luo H, Chen YY, Jin SF, Gao F, Wan LJ, Hu JS. J Am Chem Soc, 2017, 139: 8320–8328

    Article  CAS  PubMed  Google Scholar 

  33. Anantharaj S, Ede SR, Sakthikumar K, Karthick K, Mishra S, Kundu S. ACS Catal, 2016, 6: 8069–8097

    Article  CAS  Google Scholar 

  34. Jiang Y, Zhang X, Ge QQ, Yu BB, Zou YG, Jiang WJ, Hu JS, Song WG, Wan LJ. ACS Appl Mater Interfaces, 2014, 6: 15448–15455

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21573249, 51732004) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB12020100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenxiao Pan, Xinhua Zhong or Jin-Song Hu.

Electronic supplementary material

11426_2018_9279_MOESM1_ESM.docx

Self-supported metal sulphide nanocrystals-assembled nanosheets on carbon paper as efficient counter electrodes for quantum-dot-sensitized solar cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, JK., Zhang, L., Yue, L. et al. Self-supported metal sulphide nanocrystals-assembled nanosheets on carbon paper as efficient counter electrodes for quantum-dot-sensitized solar cells. Sci. China Chem. 61, 1338–1344 (2018). https://doi.org/10.1007/s11426-018-9279-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9279-0

Keywords

Navigation