Skip to main content
Log in

Large-scale preparation of fernwort-like single-crystalline superstructures of CuSe as Fenton-like catalysts for dye decolorization

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A simple green hydrothermal template-free method was developed to prepare single-crystalline superstructures of fern-wort-like copper selenide (CuSe) in large-scale by using polyvinylpyrrolidone (PVP) as both reductant and surfactant for the first time. Time-dependent morphologic evolution was made in order to explore the formation mechanism of the as-prepared product. The copper selenides with different morphologies, phases and structural forms could be prepared by varying the synthesis parameters, such as precursor molar ratios, precursor combinations, and the molecular weight of PVP. The fernwort-like superstructures of CuSe show excellent Fenton-like catalytic activities in degrading malachite green (MG) and rhodamine B (RhB). These catalysts play an important role in the degradation process of MG and RhB solution with the aid of H2O2 which can yield highly reactive hydroxyl radicals (HO·). Besides, the as-prepared CuSe catalyst is stable and reusable, thus it could be applied to the treatment of the dye contaminated waste water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang JY, Cheng CY. Chem Commun, 2011, 47: 9089–9091

    Article  CAS  Google Scholar 

  2. Sahoo JK, Tahir MN, Yella A, Schladt TD, Mugnaoli E, Kolb U, Tremel W. Angew Chem Int Ed, 2010, 122: 7741–7745

    Article  Google Scholar 

  3. Kovalenko MV, Scheele M. Science, 2009, 324: 1417–1420

    Article  CAS  Google Scholar 

  4. Haram SK, Santhanam KSV, Numann-Spallar M, Levy-Clement C. Mater Res Soc Bull, 1992, 27: 1185–1191

    Article  CAS  Google Scholar 

  5. Li WL, Lie SQ, Du YQ, Wan XY, Wang TT, Huang CZ. J Mater Chem B, 2014, 2: 7027–7033

    Article  CAS  Google Scholar 

  6. Lie SQ, Wang DM, Gao MX, Huang CZ. Nanoscale, 2014, 6: 10289–10296

    Article  CAS  Google Scholar 

  7. Han J, Zou HY, Liu ZX, Yang T, Gao MX, Huang CZ. New J Chem, 2015, 39: 6186–6192

    Article  CAS  Google Scholar 

  8. Shu QW, Lan J, Gao MX, Wang J, Huang CZ. CrystEngComm, 2015, 17: 1374–1380

    Article  CAS  Google Scholar 

  9. Hessel CM, Pattani VP, Rasch M, Panthani MG, Koo B, Tunnell JW, Korgel BA. Nano Lett, 2011, 11: 2560–2566

    Article  CAS  Google Scholar 

  10. Choi J, Kang N, Yang HY, Kim HJ, Son SU. Chem Mater, 2010, 22: 3586–3588

    Article  CAS  Google Scholar 

  11. Yin HH, Liu SL, Zhang CL, Bao JC, Zheng YL, Han M, Dai ZH. J Phys Chem C, 2013, 17: 15164–15173

    Google Scholar 

  12. Kundu J, Pradhan D. Appl Mater Interf, 2014, 6: 1823–1834

    Article  CAS  Google Scholar 

  13. Xu J. Zhang W, Yang Z, Ding S, Zeng C, Chen L, Wang Q, Yang S. Adv Funct Mater, 2009, 19: 1759–1766

    Article  CAS  Google Scholar 

  14. Xu J, Lee CS, Tang YB, Chen X, Chen ZH, Zhang WJ, Lee ST, Zhang W, Yang Z. ACS Nano, 2010, 4: 1845–1850

    Article  CAS  Google Scholar 

  15. Gosavi SR, Deshpande NG, Gudage YG, Sharma R. J Alloy Compd, 2008, 448: 344–348

    Article  CAS  Google Scholar 

  16. Heyding RD, Murray RM. Can J Chem, 1976, 54: 841–848

    Article  CAS  Google Scholar 

  17. Liu T, Jin ZG, Li J, Wang J, Wang DL, Lai JY, Du HY. CrystEngComm, 2013, 15: 8903–8906

    Article  CAS  Google Scholar 

  18. Zou HY, Gao PF, Gao MX, Huang CZ. Analyst, 2015, 140: 4121–4129

    Article  CAS  Google Scholar 

  19. Lie SQ, Zou HY, Chang Y, Huang CZ. RSC Adv, 2014, 4: 55094–55099

    Article  CAS  Google Scholar 

  20. Malik M, O’Brien P, Revaprasadu N. Adv Mater, 1999, 11: 1441–1444

    Article  CAS  Google Scholar 

  21. Hu P, Cao Y. J Nanopart Res, 2012, 14: 1–8

    CAS  Google Scholar 

  22. Zhang SY, Fang CX, Tian YP, Zhu KR, Jin KB, Shen YH, Yang JY. Cryst Growth Des, 2006, 6: 2809–2813

    Article  CAS  Google Scholar 

  23. Cao HL, Qian XF, Zai JT, Yin J, Zhu ZK. Chem Commun, 2006, 21: 4548–4550

    Article  Google Scholar 

  24. Gu YJ, Su YJ, Chen D, Geng HJ, Li ZL, Zhang LY, Zhang YF. CrystEngComm, 2014, 16: 9185–9190

    Article  CAS  Google Scholar 

  25. Vinod TP, Jin X, Kim J. Mater Res Bull, 2011, 46: 340–344

    Article  CAS  Google Scholar 

  26. Li DP, Zheng Z, Lei Y, Ge SY, Zhang YD, Zhang YG, Wong KW, Yang FL, Lau WM. CrystEngComm, 2010, 12: 1856–1861

    Article  CAS  Google Scholar 

  27. Hoppe CE, Lazzari M, Pardinas-Blanco I, Lopez-Quintela MA. Langmuir, 2006, 22: 7027–7034

    Article  CAS  Google Scholar 

  28. Xiong YJ, Washio I, Chen JY, Cai HG, Li ZY, Xia YN. Langmuir, 2006, 22: 8563–8570

    Article  CAS  Google Scholar 

  29. Washio I, Xiong YJ, Yin YN, Xia YN. Adv Mater, 2006, 18: 1745–1749

    Article  CAS  Google Scholar 

  30. Zhang WX, Zhang XM, Zhang L, Wu JX, Hui ZH, Cheng YW, Liu JW, Xie Y, Qian YT. Inorg Chem, 2000, 19: 1836–1838

    Google Scholar 

  31. Luther JM, Law M, Song Q, Perkins CL, Beard CM, Nozik AJ. ACS Nano, 2008, 2: 271–280

    Article  CAS  Google Scholar 

  32. Peng Q, Dong YJ, Li YD. Angew Chem Int Ed, 2003, 42: 3027–3030

    Article  CAS  Google Scholar 

  33. Komarneni S, Li QH, Roy R. Mater Chem, 1994, 4: 1903–1906

    Article  CAS  Google Scholar 

  34. Jagminas A, Juskenas R, Gailiute I, Statkuteb G, Tomasiunas R. J Cryst Growth, 2006, 294: 343–348

    Article  CAS  Google Scholar 

  35. Haram SK, Santhanam KSV. Thin Solid Films, 1994, 238: 21–26

    Article  CAS  Google Scholar 

  36. Zhu XF, Lu P, Chen W, Dong JA. Polymer, 2010, 51: 3054–3063

    Article  CAS  Google Scholar 

  37. Hassouna F, Mailhot G, Morlat-Thérias S, Gardette JL. J Photochem Photobiol A, 2011, 218: 239–246

    Article  CAS  Google Scholar 

  38. Kaczmarek H, Kaminska A, Swiatek M, Rabek JF. Angew Makromol Chem, 1998, 109: 261–262

    Google Scholar 

  39. Zhang SY, Fang CX, Wei W, Jin BK, Tian YP, Shen YH, Yang JX, Gao XW. J Phys Chem, 2007, 111: 4168–4174

    CAS  Google Scholar 

  40. Hoppe CE, Lazzari M, Pardinas-Blanco I, Lopez-Quintela MA. Langmuir, 2006, 22: 7027–7034

    Article  CAS  Google Scholar 

  41. Rong FX, Bai Y, Chen TF, Zheng WJ. Mater Res Bull, 2012, 47: 92–95

    Article  CAS  Google Scholar 

  42. Sonia S, Kumar PS, Mangalaraj D, Ponpandian N, Viswanathan C. Appl Surf Sci, 2013, 283: 802–807

    Article  CAS  Google Scholar 

  43. Li Z, Mi LW, Chen WH, Hou HW, Liu CT, Wang HL, Zheng Z, Shen CY. CrystEngComm, 2012, 14: 3965–3971

    Article  CAS  Google Scholar 

  44. Rhadfi T, Piquemal JY, Sicard L, Herbst F, Briot E, Benedetti M, Atlamsani A. Appl Catal A-Gen, 2010, 386: 132–139

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengzhi Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Y., Zou, H., Wang, Q. et al. Large-scale preparation of fernwort-like single-crystalline superstructures of CuSe as Fenton-like catalysts for dye decolorization. Sci. China Chem. 59, 903–909 (2016). https://doi.org/10.1007/s11426-016-5600-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-5600-5

Keywords

Navigation