Skip to main content
Log in

Apoptosis induced by NaYF4:Eu3+ nanoparticles in liver cells via mitochondria damage dependent pathway

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

As lanthanide-doped sodium yttrium flouride (NaYF4) nanoparticles have great potential in biomedical applications, their biosafety is important and has attracted significant attention. In the present work, three different sized NaYF4:Eu3+ nanoparticles have been prepared. Liver BRL 3A cell was used as a cell model to evaluate their biological effects. Cell viability and apoptosis assays were used to confirm the cytotoxicity induced by NaYF4:Eu3+ NPs. Apart from the elevated malondialdehyde (MDA), the decrease of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) and catalase (CAT) activity indicated reactive oxygen species (ROS) generation, which were associated with oxidative damage. The decrease of mitochondrial membrane potential (MMP) value demonstrated the occurrence of mitochondria damage. Then, release of cytochrome c from mitochondria and activation of caspase-3 confirmed that NaYF4:Eu3+ NPs induced apoptosis was mitochondria damage-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pichaandi J, Boyer JC, Delaney KR, van Veggel FCJM. J Phys Chem C, 2011, 115: 19054–19064

    Article  CAS  Google Scholar 

  2. Gai S, Li C, Yang P, Lin J. Chem Rev, 2014, 114: 2343–2389

    Article  CAS  Google Scholar 

  3. Ostrowski AD, Chan EM, Gargas DJ, Katz EM, Han G, Schuck PJ, Milliron DJ, Cohen BE. ACS Nano, 2012, 6: 2686–2692

    Article  CAS  Google Scholar 

  4. Xu CT, Svenmarker P, Liu H, Wu X, Messing ME, Wallenberg LR, Andersson-Engels S. ACS Nano, 2012, 6: 4788–4795

    Article  CAS  Google Scholar 

  5. Park YI, Kim HM, Kim JH, Moon KC, Yoo B, Lee KT, Lee N, Choi Y, Park W, Ling D, Na K, Moon WK, Choi SH, Park HS, Yoon SY, Suh YD, Lee SH, Hyeon T. Adv Mater, 2012, 24: 5755–5761

    Article  CAS  Google Scholar 

  6. Chatterjee D, Rufaihah A, Zhang Y. Biomaterials, 2008, 29: 937–943

    Article  CAS  Google Scholar 

  7. Tian J, Zeng X, Xie X, Han S, Liew OW, Chen YT, Wang L, Liu X. J Am Chem Soc, 2015, 137: 6550–6558

    Article  CAS  Google Scholar 

  8. Abdul Jalil R, Zhang Y. Biomaterials, 2008, 29: 4122–4128

    Article  CAS  Google Scholar 

  9. Cheng L, Yang K, Shao M, Lu X, Liu Z. Nanomedicine, 2011, 6: 1327–1340

    Article  CAS  Google Scholar 

  10. Xiong L, Yang T, Yang Y, Xu C, Li F. Biomaterials, 2010, 31: 7078–7085

    Article  CAS  Google Scholar 

  11. Zhang Y, Zheng F, Yang T, Zhou W, Liu Y, Man N, Zhang L, Jin N, Dou Q, Zhang Y, Li Z, Wen LP. Nat Mater, 2012, 11: 817–826

    Article  CAS  Google Scholar 

  12. Mitzner SR, Stange J, Peszynski P, Schmidt R, Nöldge-Schomburg G. J Am Soc Nephro, 2001, 12: S75–S82

    CAS  Google Scholar 

  13. Laffitte BA, Chao LC, Li J, Walczak R, Hummasti S, Joseph SB, Castrillo A, Wilpitz DC, Mangelsdorf DJ, Collins JL, Saez E, Tontonoz P. Proc Natl Acad Sci USA, 2003, 100: 5419–5424

    Article  CAS  Google Scholar 

  14. Lv R, Yang P, He F, Gai S, Li C, Dai Y, Yang G, Lin J. ACS Nano, 2015, 9: 1630–1647

    Article  CAS  Google Scholar 

  15. Sun Y, Chen Y, Tian L, Yu Y, Kong X, Zhao J, Zhang H. Nanotechnology, 2007, 18: 275609

    Article  Google Scholar 

  16. Hegardt C. Cell Biol Int, 2003, 27: 115–121

    Article  CAS  Google Scholar 

  17. Napierska D, Thomassen LCJ, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, Martens JA, Hoet PH. Small, 2009, 5: 846–853

    Article  CAS  Google Scholar 

  18. Albanese A, Tang PS, Chan WC. Annu Rev Biomed Eng, 2012, 14: 1–16

    Article  CAS  Google Scholar 

  19. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W. Small, 2007, 3: 1941–1949

    Article  CAS  Google Scholar 

  20. Spector AA, Yorek MA. J Lipid Res, 1985, 26: 1015–1035

    CAS  Google Scholar 

  21. Fotakis G, Timbrell JA. Toxicol Lett, 2006, 160: 171–177

    Article  CAS  Google Scholar 

  22. Singh N, Jenkins GJ, Asadi R, Doak SH. Nano Rev, 2010, 1: 5358–5373

    Article  Google Scholar 

  23. Nel A. Science, 2006, 311: 622–627

    Article  CAS  Google Scholar 

  24. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE. ACS Nano, 2008, 2: 2121–2134

    Article  CAS  Google Scholar 

  25. Sharma V, Anderson D, Dhawan A. Apoptosis, 2012, 17: 852–870

    Article  CAS  Google Scholar 

  26. Jacobs-Gedrim RB, Shanmugam M, Jain N, Durcan CA, Murphy MT, Murray TM, Matyi RJ, Moore RL, Yu B. ACS Nano, 2014, 8: 514–521

    Article  CAS  Google Scholar 

  27. Wang F, Gao F, Lan M, Yuan H, Huang Y, Liu J. Toxicol in Vitro, 2009, 23: 808–815

    Article  CAS  Google Scholar 

  28. Nabavi SM, Nabavi SF, Eslami S, Moghaddam AH. Food Chem, 2012, 132: 931–935

    Article  CAS  Google Scholar 

  29. Heckert EG, Karakoti AS, Seal S, Self WT. Biomaterials, 2008, 29: 2705–2709

    Article  CAS  Google Scholar 

  30. Begg AC, Stewart FA, Vens C. Nat Rev Cancer, 2011, 11: 239–253

    Article  CAS  Google Scholar 

  31. Dumaswala UJ, Wilson MJ, Wu YL, Wykle J, Zhuo L, Douglass LM, Daleke DL. Free Radical Res, 2000, 33: 517–529

    Article  CAS  Google Scholar 

  32. Park EJ, Choi J, Park YK, Park K. Toxicology, 2008, 245: 90–100

    Article  CAS  Google Scholar 

  33. He W, Zhou YT, Wamer WG, Boudreau MD, Yin JJ. Biomaterials, 2012, 33: 7547–7555

    Article  CAS  Google Scholar 

  34. Sanchez C, El Hajj Diab D, Connord V, Clerc P, Meunier E, Pipy B, Payré B, Tan RP, Gougeon M, Carrey J, Gigoux V, Fourmy D. ACS Nano, 2014, 8: 1350–1363

    Article  CAS  Google Scholar 

  35. Green DR, Reed JC. Science, 1998, 281: 1309–1312

    Article  CAS  Google Scholar 

  36. Kroemer G, Zamzami N, Susin SA. Immunol Today, 1997, 18: 44–51

    Article  CAS  Google Scholar 

  37. Lin MT, Beal MF. Nature, 2006, 443: 787–795

    Article  CAS  Google Scholar 

  38. Khan MI, Mohammad A, Patil G, Naqvi SAH, Chauhan LKS, Ahmad I. Biomaterials, 2012, 33: 1477–1488

    Article  CAS  Google Scholar 

  39. Jiang X, Wang X. Annu Rev Biochem, 2004, 73: 87–106

    Article  CAS  Google Scholar 

  40. Leung CWT, Hong Y, Chen S, Zhao E, Lam JWY, Tang BZ. J Am Chem Soc, 2013, 135: 62–65

    Article  CAS  Google Scholar 

  41. Porter AG, Jänicke RU. Cell Death Differ, 1999, 6: 99–104

    Article  CAS  Google Scholar 

  42. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Cell, 1996, 86: 147–157

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (21271059, 31470961, 21603051, 21601046, 31500812), Science and Technology Research Project of Higher Education Institutions in Hebei Province (QN2015230, QN2015132), the Natural Science Foundation of Hebei Province (B2015201097, B2016201169), and the Science and Technology Support Program of Baoding (15ZF055).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinjian Yang or Jinchao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Chen, S., Gao, C. et al. Apoptosis induced by NaYF4:Eu3+ nanoparticles in liver cells via mitochondria damage dependent pathway. Sci. China Chem. 60, 122–129 (2017). https://doi.org/10.1007/s11426-016-0225-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0225-5

Keywords

Navigation