Skip to main content
Log in

Estimation of the desorption energy of dichloromethane and water in MIL-53 by DSC and ab-initio calculations

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Desorption energies of dichloromethane (CH2Cl2) and water (H2O) in a metal-organic framework, MIL-53(Al), were investigated by the combination of experimental (differential scanning calorimeter, DSC) and computational (ab-initio calculations) methods. The differences of desorption energy and natural log of the frequency factor of CH2Cl2 and H2O in MIL-53(Al) were analyzed by a thermo active process using DSC measurements. The interaction energy of guest molecules with MIL-53(Al), which correspond to the desorption in the thermal active process, was explored using ab-initio calculation. As a result of the difference in the interaction energies of H2O and CH2Cl2 in MIL-53(Al), the site near the μ2-OH groups has two potential wells. Both experimentally and computationally, MIL-53 presents the preferential adsorption of CH2Cl2 than H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xia QB, Li Z, Xiao LM, Zhang ZJ, Xi H. J Hazard Mater, 2010, 1–3: 790–794

    Article  Google Scholar 

  2. Yan JL, Jiang S, Ji SF, Shi D, Cheng HF. Sci China Chem, 2015: 1–8

    Google Scholar 

  3. Neimark AV, Coudert FX, Triguero C, Boutin A, Fuchs AH, Beurroies I, Denoyel R. Langmuir, 2011, 8: 4734–4741

    Article  Google Scholar 

  4. Neimark AV, Coudert FX, Boutin A, Fuchs AH. J Phys Chem L, 2010, 1: 445–449

    Article  CAS  Google Scholar 

  5. Beurroies I, Boulhout M, Llewellyn PL, Kuchta B, Férey G, Serre C, Denoyel R. Angew Chem Int Ed, 2010, 41: 7526–7529

    Article  Google Scholar 

  6. Boutin A, Bousquet D, Ortiz AU, Coudert FX, Fuchs AH, Ballandras A, Weber G, Bezverkhyy I, Bellat J, Ortiz G, Chaplais G, Paillaud J, Marichal C, Nouali H, Patarin J. J Phys Chem C, 2013, 16: 8180–8188

    Article  Google Scholar 

  7. Walker AM, Civalleri B, Slater B, Mellot Draznieks C, Corà F, Zicovich Wilson CM, Soler JM, Gale JD. Angew Chem Int Ed, 2010: 7501–7503

    Google Scholar 

  8. Pera-Titus M, Lescouet T, Aguado S, Farrusseng D. J Phys Chem C, 2012, 17: 9507–9516

    Article  Google Scholar 

  9. Coudert FX, Boutin A, Fuchs AH, Neimark AV. J Phys Chem L, 2013, 19: 3198–3205

    Article  Google Scholar 

  10. Férey G, Serre C. Chem Soc Rev, 2009

    Google Scholar 

  11. Boutin A, Coudert FX, Springuel-Huet MA, Neimark AV, Férey G, Fuchs AH. J Phys Chem C, 2010, 50: 22237–22244

    Article  Google Scholar 

  12. Ghoufi A, Subercaze A, Ma Q, Yot PG, Ke Y, Puente-Orench I, Devic T, Guillerm V, Zhong C, Serre C, Férey G, Maurin G. J Phys Chem C, 2012, 24: 13289–13295

    Article  Google Scholar 

  13. Devic T, Salles F, Bourrelly S, Moulin B, Maurin G, Horcajada P, Serre C, Vimont A, Lavalley JC, Leclerc H. J Mater Chem, 2012, 20: 10266–10273

    Article  Google Scholar 

  14. Haigis V, Coudert FX, Vuilleumier R, Boutin A. Phys Chem Chem Phys, 2013, 43: 19049–19056

    Article  Google Scholar 

  15. Devautour-Vinot S, Maurin G, Henn F, Serre C, Devic T, Férey G. Chem Commun, 2009, 19: 2733

    Article  Google Scholar 

  16. Devautour-Vinot S, Maurin G, Henn FO, Serre C, Férey G. Phys Chem Chem Phys, 2010, 39: 12478–12485

    Article  Google Scholar 

  17. Paesani F. Mol Simulat, 2012, 8–9: 631–641

  18. Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Férey G. Chem Eur J, 2004, 6: 1373–1382

    Article  Google Scholar 

  19. Salles F, Ghoufi A, Maurin G, Bell R G, Mellot-Draznieks C, Férey G. Angew Chem Int Ed, 2008, 8487–8491

    Google Scholar 

  20. Salazar JM, Weber G, Simon JM, Bezverkhyy I, Bellat JP. J Chem Phys, 2015, 12: 124702

    Article  Google Scholar 

  21. Zhao Y, Truhlar DG. Theor Chem Acc, 2008, 1–3: 215–241

    Article  Google Scholar 

  22. Sillar K, Hofmann A, Sauer J. J Am Chem Soc, 2009, 11: 4143–4150

    Article  Google Scholar 

  23. Bordiga S, Vitillo JG, Ricchiardi G, Regli L, Cocina D, Zecchina A, Arstad B, Bj Rgen M, Hafizovic J, Lillerud KP. J Phys Chem B, 2005, 39: 18237–18242

    Article  Google Scholar 

  24. Sagara T, Klassen J, Ortony J, Ganz E. J Chem Phys, 2005, 1: 164–170

    Google Scholar 

  25. Pires J, Pinto ML, Saini VK. ACS Appl Mater Inter, 2014, 15: 12093–12099

    Article  Google Scholar 

  26. Kuc A, Heine T, Seifert G, Duarte HA. Chem Eur J, 2008, 22: 6597–6600

    Article  Google Scholar 

  27. Wu H, Chua YS, Krungleviciute V, Tyagi M, Chen P, Yildirim T, Zhou W. J Am Chem Soc, 2013, 135:10525–10532

    Article  CAS  Google Scholar 

  28. Yu J, Balbuena PB. J Phys Chem C, 2013, 7: 3383–3388

    Article  Google Scholar 

  29. Serre C, Bourrelly S, Vimont A, Ramsahye NA, Maurin G, Llewellyn PL, Daturi M, Filinchuk Y, Leynaud O, Barnes P, Férey G. Adv Mater, 2007, 17: 2246–2251

    Article  Google Scholar 

  30. Peyser P, Bascom WD. J Appl Polym Sci, 1977, 21: 2359–2373

    Article  CAS  Google Scholar 

  31. Chandran MS, Krishna M, Rai S, Krupashankara MS, Salini K. ISRN Polym Sci, 2012: 1–8

    Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA. Gaussian 03, Revision C. 02. Wallingford, CT: Gaussian Inc., 2010

    Google Scholar 

  33. Lazar P, Karlický F, Jurecka P, Kocman M, Otyepková E, Šafárová K, Otyepka M. J Am Chem Soc, 2013, 16: 6372–6377

    Article  Google Scholar 

  34. Kolokolov DI, Jobic H, Rives S, Yot PG, Ollivier J, Trens P, Stepanov AG, Maurin G. J Phys Chem C, 2015, 15: 8217–8225

    Article  Google Scholar 

  35. Bourrelly S, Moulin B, Rivera A, Maurin G, Devautour-Vinot S, Serre C, Devic T, Horcajada P, Vimont A, Clet G. J Am Chem Soc, 2010, 27: 9488–9498

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinghua Zhang or Yunlin Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Zhang, X., Chen, Y. et al. Estimation of the desorption energy of dichloromethane and water in MIL-53 by DSC and ab-initio calculations. Sci. China Chem. 59, 398–404 (2016). https://doi.org/10.1007/s11426-015-5544-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5544-1

Keywords

Navigation