Skip to main content
Log in

A self-catalytic role of methanol in PNP-Ru pincer complex catalysed dehydrogenation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Extracting hydrogen from methanol is a safe and cost-efficient strategy for fuel supply. This process was realized recently at a mild condition with excellent efficiency by ruthenium pincer catalysts. Despite the experimental success, the associated mechanism remains under debate. With the aid of density functional theory (DFT) calculations, an updated and self-consistent mechanism which involves MeOH-catalysed dehydrogenation of ruthenium hydride intermediate and pre-protonation of the pincer ligand was present herein. This mechanism is kinetically favoured over the previously-proposed water- or formicacid-participated ones and more consistent with the optimal experimental condition where strong base and neat methanol solvent are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Coontz R, Hanson B. Science, 2004, 305: 957

    Article  CAS  Google Scholar 

  2. Muradov NZ, Veziroglu TN. Int J Hydrogen Energy, 2008, 33: 6804–6839

    Article  CAS  Google Scholar 

  3. Cortright RD, Davda RR, Dumesic JA. Nature, 2002, 418: 964–967

    Article  CAS  Google Scholar 

  4. Shabaker JW, Davda RR, Huber GW, Cortright RD, Dumesic JA. J Catal, 2003, 215: 344–352

    Article  CAS  Google Scholar 

  5. Rodríguez-Lugo RE, Trincado M, Vogt M, Tewes F, Santiso-Quinones G, Grützmacher H. Nat Chem, 2013, 5: 342–347

    Article  Google Scholar 

  6. Nielsen M, Alberico E, Baumann W, Drexler HJ, Junge H, Gladiali S, Beller M. Nature, 2013, 495: 85–90

    Article  CAS  Google Scholar 

  7. Stephan DW. Nature, 2013, 495: 54–55

    Article  CAS  Google Scholar 

  8. Gunanathan C, Milstein D. Chem Rev, 2014, 114: 12024–12087

    Article  CAS  Google Scholar 

  9. Balaraman E, Khaskin E, Leitus G, Milstein D. Nat Chem, 2013, 5: 122–125

    Article  CAS  Google Scholar 

  10. Wu L, Liu Q, Fleischer I, Jackstell R, Beller M. Nat Commun, 2014, 5: 3091

    Google Scholar 

  11. Liu Q, Wu L, Gülak S, Rockstroh N, Jackstell R, Beller M. Angew Chem Int Ed, 2014, 53: 7085–7088

    Article  CAS  Google Scholar 

  12. Chan LKM, Poole DL, Shen D, Healy MP, Donohoe TJ. Angew Chem Int Ed, 2014, 53: 761–765

    Article  CAS  Google Scholar 

  13. Yang X. ACS Catal, 2014, 4: 1129–1133

    Article  CAS  Google Scholar 

  14. Li H, Hall MB. J Am Chem Soc, 2014, 136: 383–395

    Article  CAS  Google Scholar 

  15. Lei M, Pan Y, Ma X. Eur J Inorg Chem, 2015: 794–803

    Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision D01. Wallingford, CT: Gaussian, Inc., 2013

    Google Scholar 

  17. Marenich AV, Cramer CJ, Truhlar DG. J Phys Chem B, 2009, 113: 6378–6396

    Article  CAS  Google Scholar 

  18. Zhao Y, Truhlar DG. Theor Chem Acc, 2008, 120: 215–241

    Article  CAS  Google Scholar 

  19. Bai W, Tse SKS, Lee KH, Sung HHY, Williams ID, Lin ZY, Jia GC. Sci China Chem, 2014, 57: 1079–1089

    Article  CAS  Google Scholar 

  20. Ou LH, Chen SL. Sci China Chem, 2015, 58: 586–592

    Article  CAS  Google Scholar 

  21. Gräfenstein J, Izotov D, Cremer D. J Chem Phys, 2007, 127: 214103

    Article  Google Scholar 

  22. Fukui K. Acc Chem Res, 1981, 14: 363–241

    Article  CAS  Google Scholar 

  23. Hay PJ, Wadt WR. J Chem Phys, 1985, 82: 270–283

    Article  CAS  Google Scholar 

  24. Hay PJ, Wadt WR. J Chem Phys, 1985, 82: 290–310

    Google Scholar 

  25. Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G. Chem Phys Lett, 1993, 208: 111–114

    Article  CAS  Google Scholar 

  26. Andrae D, Haussermann U, Dolg M, Stoll H, Preuss H. Theor Chim Acta, 1990, 77: 123–141

    Article  CAS  Google Scholar 

  27. Kozuch S, Shaik S. Acc Chem Res, 2011, 44: 101–110

    Article  CAS  Google Scholar 

  28. Shang R, Yang ZW, Wang Y, Zhang SL, Liu L. J Am Chem Soc, 2010, 132: 14391–14393

    Article  CAS  Google Scholar 

  29. Zhang SL, Fu Y, Shang R, Guo QX, Liu L. J Am Chem Soc, 2010, 132: 638–646

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Zhu Yu or Yao Fu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, YY., Xu, ZY., Yu, HZ. et al. A self-catalytic role of methanol in PNP-Ru pincer complex catalysed dehydrogenation. Sci. China Chem. 59, 724–729 (2016). https://doi.org/10.1007/s11426-015-5525-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5525-4

Keywords

Navigation