Skip to main content
Log in

Carbon-based optical limiting materials

  • Mini-Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this mini-review, special attention has been paid to carbon-based optical limiting materials. After a brief introduction to optical limiting mechanisms of carbon-based optical materials and their characterization technique, this mini-review presents the recent progress of carbon-based optical limiting materials including carbon black suspensions (CBS), carbon nanotubes (CNTs), fullerenes, graphene and detonation nanodiamond. Finally, perspectives on carbon-based optical limiting are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tutt L, Boggess T. A review of optical limiting mechanisms and devices using organic, fullerenes, semiconductors and other materials. Prog Quant Electr, 1993, 17: 299–338

    Article  CAS  Google Scholar 

  2. Mansour K, Soileau M, Stryland E. Nonlinear optical properties of carbon-black suspensions (ink). J Opt Soc Am B, 1992, 9: 1100–1109

    Article  CAS  Google Scholar 

  3. Nashold K, Walter D. Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions. J Opt Soc Am B, 1995, 12: 1228–1237

    Article  CAS  Google Scholar 

  4. Chen P, Wu X, Sun X, Lin J, Ji W, Tan K. Electronic structure and optical limiting behavior of carbon nanotubes. Phys Rev Lett, 1999, 82: 2548–2551

    Article  CAS  Google Scholar 

  5. Vivien L, Anglaret E, Richl D, Bacou F. Single-wall carbon nanotubes for optical limiting. Chem Phys Lett, 1999, 307: 317–319

    Article  CAS  Google Scholar 

  6. Riggs J, Walker D, Carroll D, Sun Y. Optical limiting properties of suspended and solubilized carbon nanotubes. J Phys Chem B, 2000, 104: 7071–7076

    Article  CAS  Google Scholar 

  7. Tutt L, Kost A. Optical limiting performance of C60 and C70 solutions. Nature, 1992, 356: 225–226

    Article  CAS  Google Scholar 

  8. Lim G, Chen Z, Clark J, Goh R, Ng W, Tan H, Friend R, Ho P, Chua L. Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nat Photonic, 2011, 5: 554–560

    Article  CAS  Google Scholar 

  9. Wang J, Hernandez Y, Lotya M, Coleman J, Blau W. Broadband nonlinear optical response of graphene dispersions. Adv Mater, 2009, 21: 2430–2435

    Article  CAS  Google Scholar 

  10. Zhang X, Liu Z, Yan X, Li X, Chen Y, Tian J. Nonlinear optical and optical limiting properties of fullerene, multi-walled carbon nanotubes, graphene and their derivatives with oxygen-containing functional groups. J Opt, 2015, 17: 015501

    Article  CAS  Google Scholar 

  11. Sun W, Bader M, Carvalho T, Third-order optical nonlinearities of α, ω-dhienylpolyenes and oligo(thienylvinylene). Opt Commun, 2003, 215: 185–190

    Article  CAS  Google Scholar 

  12. Cheng Y, Hao H, Xiao H, Zhu S. Third-order nonlinear optical properties of two novel fullerene derivatives. J Phys B: At Mol Opt Phys, 2009, 42: 235401

    Article  Google Scholar 

  13. Neto N, Mendonca C, Misoguti L, Zilio S. Optical limiting of ultrashort pulses by carbon black suspension. Appl Phys B, 2004, 78: 1–3

    Article  Google Scholar 

  14. Vincent D. Optical limiting threshold in carbon suspensions and reverse saturable absorber materials. Appl Opt, 2001, 40: 6646–6653

    Article  CAS  Google Scholar 

  15. Hernandez F, Shensky W, Cohanoschi I, Hagan D, van Stryland E. Viscosity ependence of optical limiting in carbon black suspensions. Appl Opt, 2002, 41: 1103–1107

    Article  CAS  Google Scholar 

  16. Tiwari S, Joshi M, Nath S, Mehendale S. Salt-induced aggregation and enhanced optical limiting in carbon-black suspensions. J Nonlinear Opt Phys Mater, 2003, 12: 335–339

    Article  CAS  Google Scholar 

  17. Vincent D, Petit S, Chin S. Optical limiting studies in a carbon-black suspension for subnanosecond and subpicosecond laser pulses. Appl Opt, 2002, 41: 2944–2946

    Article  Google Scholar 

  18. Kyoto H, Heath J, O’brien S, Curl R, Smalley R. C60: buckminsterfullerene. Nature, 1985, 318: 162–163

    Article  Google Scholar 

  19. Tong R, Wu H, Li B, Zhu R, You G, Qian S, Lin Y, Cai R. Reverse saturable absorption and optical limiting performance of fullerenefunctionalized polycarbonates in femtoseond time scale. Physica B, 2005, 366: 192–199

    Article  CAS  Google Scholar 

  20. Henari F, Callaghan J, Stiel H, Blau W, Cardin D. Intensitydependent absorption and resonant optical nonlinearity of C60 and C70 solutions. Chem Phys Lett, 1992, 199: 144–148

    Article  CAS  Google Scholar 

  21. Chen Y, Lin Y, Liu Y, Doyle J, He N, Zhuang X, Bai J, Blau WJ. Carbon nanotube-based functional materials for optical limiting. J Nanosci Nanotechnol, 2007, 7: 1268–1283

    Article  CAS  Google Scholar 

  22. Arbogast J, Darmanyan A, Foote C, Diederich F, Whetten R, Rubin Y, Alvarez M, Anz S. Photophysical properties of sixty atom carbon molecule (C60). J Phys Chem, 1991, 95: 11–12

    Article  CAS  Google Scholar 

  23. Bentivegna F, Canva M, Georges P, Brun A, Chaput F, Malier L, Boilot J. Reverse saturable absorption in solid xerogel matrices. Appl Phys Lett, 1993, 62: 1721–1723

    Article  CAS  Google Scholar 

  24. Karen N, Walter D. Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions. J Opt Soc Am B, 1995, 12: 1228–1236

    Article  Google Scholar 

  25. Cheville RA, Halas NJ. Time-resolved carrier relaxation in solid C60 thin films. Phys Rev B, 1992, 45: R4548

    Article  Google Scholar 

  26. Farztdinov VM, Lozovik YE, Matveets YA, Stepanov AG, Letokhov YS. Molecular-dynamics investigation of surface-induced melting in sulfur hexafluoride. J Phys Chem, 1994, 98: 3290–3299

    Article  CAS  Google Scholar 

  27. Flom SR, Bartoli J, Sarkas HW, Merrit CD, Kafafi ZH. Quantum mechanics, quantum-classical correspondence, thermodynamics, and response of a small anharmonic periodic chain. Phys Rev B, 1994, 51: 11376

    Article  Google Scholar 

  28. Kopitkovas G, Chugreev A, Nierengarten JF, Rio Y, Rehspringer JL, Hönerlage B. Reverse saturable absorption of fullerodendrimers in porous SiO2 sol-gel matrices. Opt Mater, 2004, 27: 285–291

    Article  CAS  Google Scholar 

  29. Schell J, Felder D, Nierengarten JF, Lévy R, Hönerlag B. Induced absorption of C60 and a water-soluble C60-derivative in SiO2 sol-gel matrices. J Sol-Gel Sci Technol, 2001, 22: 225–236

    Article  CAS  Google Scholar 

  30. Ouyang X, Zeng H, Ji W. Synthesis, strong two-photon absorption, and optical limiting properties of novel C70/C60 derivatives containing various carbazole units. J Phys Chem B, 2009, 113: 14565–14573

    Article  CAS  Google Scholar 

  31. Aloukos P, Iliopoulos K, Couris S, Guldi D, Sooambar C, Matero-Alonso A, Nagaswaran P, Bonifazi D, Prato M. Photophysics and transient nonlinear optical response of donor-[60]fullerence hybrids. J Mater Chem, 2011, 21: 2524–2534

    Article  CAS  Google Scholar 

  32. Golovlev V, Garrett W, Chen C. Reverse saturable absorption of C60 in liquids irradiated by picosecond and nanosecond laser pulses. J Opt Soc Am B, 1996, 13: 2801–2807

    Article  CAS  Google Scholar 

  33. Perry J, Mansour K, Lee I, Wu X, Bedworth P, Chen C, Ng D, Marder S, Miles P, Wada T, Tian M, Sasabe H. Organic optical limiter with a strong nonlinear absorptive response. Science, 1996, 273: 1533–1536

    Article  CAS  Google Scholar 

  34. Goh H, Goh S, Xu G, Lee K, Yang G, Lee Y, Zhang W. Optical limiting properties of double-C60-end-capped poly(ethylene oxide), double-C60-end-capped poly(ethylene oxide)/poly(ethylene oxide) blend, and double-C60-end-capped poly(ethylene oxide)/multiwalled carbon nanotube composite. J Phys Chem B, 2003, 107: 6056–6062

    Article  CAS  Google Scholar 

  35. Hua J, Yang W, Zhu Y, Guo Z, Yang H, Xu L, Chen D. Opticallimiting effect of C60 bonded poly(N-vinylcarbazole) initiated with C60Cln/CuCl/Bpy catalyst system. Mater Lett, 2005, 59: 644–647

    Article  CAS  Google Scholar 

  36. Cheng Y, Hao H, Xiao H, Zhu S. Third-order nonlinear optical properties of two novel fullerene derivatives. J Phys B: At Mol Opt Phys, 2009, 42: 235401

    Article  Google Scholar 

  37. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56–58

    Article  CAS  Google Scholar 

  38. Sun X, Yu R, Xu G, Hor T, Ji W. Broadband optical limiting with multiwalled carbon nanotubes. Appl Phys Lett, 1998, 73: 3632–3634

    Article  CAS  Google Scholar 

  39. Vivien L, Anglaret E, Riehl D, Bacou F, Journet C, Goze C, Andrieux M, Brunet M, Lafonta F, Bernier P, Hache F. Single-wall carbon nanotubes for optical limiting. Chem Phys Lett, 1999, 307: 317–319

    Article  CAS  Google Scholar 

  40. Chen P, Wu X, Sun X, Lin J, Ji W, Tan K. Electronic structure and optical limiting behavior of carbon nanotubes. Phys Rev Lett, 1999, 82: 2548–5552

    Article  CAS  Google Scholar 

  41. Mishra S, Rawat H, Mehendale S, Rustagi K, Sood A, Bandyopadhyay R, Govindaraj A, Rao C. Optical limiting in single-walled carbon nanotube suspensions. Chem Phys Lett, 2000, 317: 510–514

    Article  CAS  Google Scholar 

  42. Vivien L, Lancon P, Riehl D, Hache F, Anglaret E. Carbon nanotubes for optical limiting. Carbon, 2002, 40: 1789–1797

    Article  CAS  Google Scholar 

  43. Jin Z, Huang L, Goh SH, Xu G, Ji W. Size-dependent optical limiting behavior of multi-walled carbon nanotubes. Chem Phys Lett, 2002, 352: 328–333

    Article  CAS  Google Scholar 

  44. Wang J, Blau W. Solvent effect on optical limiting properties of single-walled carbon nanotube dispersions. J Phys Chem C, 2008, 112: 2298–2303

    Article  CAS  Google Scholar 

  45. Riggs J, Walker D, Carroll D, Sun Y. Optical limiting properties of suspended and solubilized carbon nanotubes. J Phys Chem B, 2000, 104: 7071–7076

    Article  CAS  Google Scholar 

  46. Izard N, Billaud P, Riehl D, Anglaret E. Influence of structure on the optical limiting properties of nanotubes, Opt Lett, 2005, 30: 1509–1511

    Article  CAS  Google Scholar 

  47. Xiong Y, Si J, Yan L, Song H, Yi W, Hou X. The influence of nonlinear scattering light distributions on the optical limiting properties of carbon nanotubes. Laser Phys Lett, 2014, 11: 115904

    Article  Google Scholar 

  48. Zhang L, Yu H, Liu L, Wang L. Study on the preparation of multiwalled carbon nanotube/phthalocyanine composites and their optical limiting effects. J Composite Mater, 2014, 48: 959–967

    Article  CAS  Google Scholar 

  49. Wang A, Fang Y, Long Lg, Song Y, Yu W, Zhao W, Cifuentes M, Humphrey M, Zhang C. Facile synthesis and enhanced nonlinear optical properties of porphyrin-functionalized multi-walled carbon nanotubes. Chem Eur J, 2013, 19: 14159–14170

    Article  CAS  Google Scholar 

  50. Wang A, Fang Y, Yu W, Long L, Song Y, Zhao W, Cifuentes M, Humphrey M, Zhang C. Allyloxyporphyrin-functionalized multiwalled carbon nanotubes: synthesis by radical polymerization and enhanced optical-limiting properties. Chem Asian J, 2014, 9: 639–648

    Article  CAS  Google Scholar 

  51. Remyamol T, Gopinath P, John H. Core-shell nanostructures of covalently grafted polyaniline multi-walled carbon nanotube hybrids for improved optical limiting. Opt Lett, 2015, 40: 21–24

    Article  CAS  Google Scholar 

  52. Zhang X, Liu Z, Zhao X, Yan X, Li X, Tian J. Optical limiting effect and ultrafast saturable absorption in a solid PMMA composite containing porphyrin-covalently functionalized multi-walled carbon nanotubes. Opt Express, 2013, 21: 196156

    Google Scholar 

  53. Mondal A, Jana N. Graphene-nanoparticle composites and their applications in energy, environmental and biomedical science. Rev Nanosci Nanotechnol, 2014, 3: 177–192

    Article  CAS  Google Scholar 

  54. Zhou T, Yu H, Liu M, Yang YW. Carboxylatopillarene-modified reduced graphene oxides with high water dispersibility for fluorescent dye sensing. Chinese J Chem, 2015, 33: 125–130

    Article  CAS  Google Scholar 

  55. Zhang Q, Li Q, Xiang S, Wang Y, Wang C, Jiang W, Zhou H, Yang YW, Tang J. Covalent modification of graphene oxide with polynorbornene by surface-initiated ring-opening metathesis polymerization. Polymer, 2014, 55: 6044–6050

    Article  CAS  Google Scholar 

  56. Liu ZB, Wang Y, Zhang XL, Xu YF, Chen YS, Tian JG. Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes. Appl Phys Lett, 2009, 94: 021902

    Article  Google Scholar 

  57. Feng M, Zhan H, Chen Y. Nonlinear optical and optical limiting properties of graphene families. Appl Phys Lett, 2010, 96: 033107

    Article  Google Scholar 

  58. Wang J, Chen Y, Li R, Dong H, Ju Y, He J, Fan J, Wang K, Liao K, Zhang L, Curran S, Blau W. Graphene and carbon nanotube polymer composites for laser protection. J Inorg Organomet Polym, 2011, 21: 736–746

    Article  CAS  Google Scholar 

  59. Xu Y, Liu Z, Zhang XG, Wang Y, Tian J, Huang Y, Ma Y, Zhang X, Chen Y. A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv Mater, 2009, 21: 1275–1279

    Article  CAS  Google Scholar 

  60. Song W, He C, Zhang W, Gao Y, Yang Y, Wu Y, Chen Z, Li X, Dong Y. Synthesis and nonlinear optical properties of reduced graphene oxide hybrid material covalently functionalized with zinc phthalocyanine. Carbon, 2014, 77: 1020–1030

    Article  CAS  Google Scholar 

  61. Krishna MV, Kumar P, Venkatramaiah N, Venkatesan R, Rao D. Nonlinear optical properties of covalently linked graphene-metal porphyrin composite materials. Appl Phys Lett, 2011, 98: 081106

    Article  Google Scholar 

  62. Li P, Chen Y, Zhu J, Feng M, Zhuang X, Lin Y, Zhan H. Charmbracelet- type poly(N-vinylcarbazole) functionalized with reduced graphene oxide for broadband optical limiting. Chem Eur J, 2011, 17: 780–785

    Article  CAS  Google Scholar 

  63. Vanyukov VV, Mikheev GM, Mogileva TN, Puzyr AP, Bondar VS, Svirko YP. Concentration dependence of the optical limiting and nonlinear light scattering in aqueous suspensions of detonation nanodiamond clusters. Opt Mater, 2014, 37: 218–222

    Article  CAS  Google Scholar 

  64. Mikheev GM, Puzyr AP, Vanyukov VV, Purtov KV, Mogileva TN, Bondar VS. Optical limiting in the near-IR range in nanodiamonds dispersed in D2O. Tech Phys Lett, 2010, 36: 358–361

    Article  CAS  Google Scholar 

  65. Josset S, Muller O, Schmidlin L, Pichot V, Spitzer D. Nonlinear optical properties of detonation nanodiamond in the near infrared: effects of concentration and size distribution. Diam Relat Mater, 2013, 32: 66–71

    Article  CAS  Google Scholar 

  66. Vanyukov V, Mogileva T, Mikheev G, Puzir A, Bondar V, Svirko Y. Size effect on the optical limiting in suspensions of detonation nanodiamond clusters. Appl Optics, 2013, 52: 4123–4130

    Article  CAS  Google Scholar 

  67. Koudoumas E, Kokkinaki O, Konstantaki M, Couris S, Korovin S, Detkov P, Kuznetsov V, Pimenov S, Pustovoi V. Onion-like carbon and diamond nanoparticles for optical limiting. Chem Phys Lett, 2002, 357: 336–340

    Article  CAS  Google Scholar 

  68. Gao Y, Zhou YS, Park JB, Wang H, He XN, Luo HF, Jiang L, Lu YF. Resonant excitation of precursor molecules in improving the particle crystallinity, growth rate and optical limiting performance of carbon nano-onions. Nanotechnology, 2011, 22: 165604

    Article  CAS  Google Scholar 

  69. Krungleviciute V, Migone AD, Pepka M. Characterization of singlewalled carbon nanohorns using neon adsorption isotherms. Carbon, 2009, 47: 769–774

    Article  CAS  Google Scholar 

  70. Murata K, Kaneko K, Kokai F, Takahashi K, Yudasaka M, Iijima S. Pore structure of single-wall carbon nanohorn aggregates. Chem Phys Lett, 2000, 331: 14–20

    Article  CAS  Google Scholar 

  71. Yudasaka M, Iijima S, Crespi VH. Single-wall carbon nanohorns and nanocones. Top Appl Phys, 2008, 111: 605–629

    Article  CAS  Google Scholar 

  72. Mercatelli L, Sani E, Zaccanti G, Martelli F, Ninni PD, Barison S, Pagura C, Agresti F, Jafrancesco D. Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers. Nanoscale Res Lett, 2011, 6: 1–9

    Article  Google Scholar 

  73. Baughman RH, Eckhardt H, Kertesz M. Structure-property predictions for new planar forms of carbon: layered phases containing sp2 and sp atoms. J Chem Phys, 1987, 87: 6687–6699

    Article  CAS  Google Scholar 

  74. He XJ, Tan J, Bu HX, Zhang HY, Zhao MW. The roles of electrons in the electronic structures and optical properties of graphyne. Chin Sci Bull, 2012, 57: 3080–3085

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Wei Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Lv, M., Guo, J. et al. Carbon-based optical limiting materials. Sci. China Chem. 58, 1782–1791 (2015). https://doi.org/10.1007/s11426-015-5480-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5480-0

Keywords

Navigation