Skip to main content
Log in

Improved performance and prolonged lifetime of titania-based materials: sequential use as adsorbent and photocatalyst

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Lifetime is a key index in the evaluation of environmentally functional materials. Although it is well known that adsorption is the first step in photo-catalysis, very little work has been done on the sequential use of materials as both adsorbents and photocatalysts. In this work, two titania-based materials, TiO2 xerogel and TiO2 photocatalyst nanoparticles, were fabricated and evaluated as adsorbent and photocatalyst for the remediation of contaminated water with an azo dye, Acid Orange 7 (AO7), as the modeling pollutant. The TiO2 xerogel showed a high adsorption capacity to AO7 (769 mg/g) and could be regenerated easily with diluted NaOH solution (0.01 mol/L) for several cycles. The exhausted xerogel was calcined at 400 °C for 3 h and used as a photocatalyst for the degradation of AO7. Compared to the nanoparticles directly prepared from fresh TiO2 xerogel, the TiO2 nanoparticles from adsorption exhausted xerogel showed a much higher photocatalytic activity upon both UV and visible light irradiation. Thus the titania-based materials were endowed with improved performance as well as prolonged lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zollinger H. Color Chemistry: Synthesis, Properties of Organic Dyes and Pigments. New York: VCH Publishers, 1987

    Google Scholar 

  2. Abramian L, El-Rassy H. Adsorption kinetics and thermodynamics of azo-dye Orange II onto highly porous titania aerogel. Chem Eng J, 2009, 150: 403–410

    Article  CAS  Google Scholar 

  3. Seshadri S, Bishop PL, Agha AM. Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste Manage, 1994, 14: 127–137

    Article  CAS  Google Scholar 

  4. Gil A, Assis FCC, Albeniz S, Korili SA. Removal of dyes from wastewaters by adsorption on pillared clays. Chem Eng J, 2011, 168: 1032–1040

    Article  CAS  Google Scholar 

  5. Mills A, Sheik M, O’Rourke C, McFarlane M. Adsorption and photocatalysed destruction of cationic and anionic dyes on mesoporous titania films: reactions at the air-solid interface. Appl Catal B: Environ, 2009, 89: 189–195

    Article  CAS  Google Scholar 

  6. Rauf MA, Ashraf SS. Application of advanced oxidation processes (AOP) to dye degradation-an overview. In: Lang AR, Ed. Dyes and Pigments: New Research. Hauppauge: Nova Science Publishers, 2009

    Google Scholar 

  7. Rauf MA, Ashraf SS. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem Eng J, 2009, 151: 10–18

    Article  CAS  Google Scholar 

  8. Daneshvar N, Ayazloo M, Khataee AR, Pourhassan M. Biological decolorization of dye solution containing Malachite Green by microalgae Cosmarium sp. Bioresour Technol, 2007, 98: 1176–1182

    Article  CAS  Google Scholar 

  9. Yu J, Wang X, Yue PL. Optimal decolorization and kinetic modeling of synthetic dyes by Pseudomonas strains. Water Res, 2001, 35: 3579–3586

    Article  CAS  Google Scholar 

  10. Greluk M, Hubicki Z. Effect of basicity of anion exchangers and number and positions of sulfonic groups of acid dyes on dyes adsorption on macroporous anion exchangers with styrenic polymer matrix. Chem Eng J, 2013, 215–216: 731–739

    Article  Google Scholar 

  11. Gerçel Ö, Gerçel HF. Removal of acid dyes from aqueous solutions using chemically activated carbon. Sep Sci Technol, 2009, 44: 2078–2095

    Article  Google Scholar 

  12. Liao P, Ismael ZM, Zhang W, Yuan S, Tong M, Wang K, Bao J. Adsorption of dyes from aqueous solutions by microwave modified bamboo charcoal. Chem Eng J, 2012, 195–196: 339–346

    Article  Google Scholar 

  13. Li J, Feng J, Yan W. Excellent adsorption and desorption characteristics of polypyrrole/TiO2 composite for Methylene Blue. Appl Surf Sci, 2013, 279: 400–408

    Article  CAS  Google Scholar 

  14. Netpradita S, Thiravetyanb P, Towprayoona S. Application of “waste” metal hydroxide sludge for adsorption of azo reactive dyes. Water Res, 2003, 37: 763–772

    Article  Google Scholar 

  15. Bourikas K, Stylidi M, Kondarides DI, Verykios XE. Adsorption of Acid Orange 7 on the surface of titanium dioxide. Langmuir, 2005, 21: 9222–9230

    Article  CAS  Google Scholar 

  16. Haghbeen K, Legge RL. Adsorption of phenolic compounds on some hybrid xerogels. Chem Eng J, 2009, 150: 1–7

    Article  CAS  Google Scholar 

  17. Mattsson A, Österlund L. Adsorption and photoinduced decomposition of acetone and acetic acid on anatase, brookite, and rutile TiO2 nanoparticles. J Phys Chem C, 2010, 114: 14121–14132

    Article  CAS  Google Scholar 

  18. Pan L, Zou JJ, Zhang X, Wang L. Water-mediated promotion of dye sensitization of TiO2 under visible light. J Am Chem Soc, 2011, 133: 10000–10002

    Article  CAS  Google Scholar 

  19. Rauf MA, Meetani MA, Hisaindee S. An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination, 2011, 276: 13–27

    Article  CAS  Google Scholar 

  20. Wu D, Wang L. Low-temperature synthesis of anatase C-N-TiO2 photocatalyst with enhanced visible-light-induced photocatalytic activity. Appl Surf Sci, 2013, 271: 357–361

    Article  CAS  Google Scholar 

  21. Kay A, Humphry-Baker R, Grätzel M. Artificial photosynthesis. 2. Investigations on the mechanism of photosensitization of nanocrystalline TiO2 solar cells by chlorophyll derivatives. J Phys Chem, 1994, 98: 952–959

    Article  CAS  Google Scholar 

  22. Zhao D, Sheng G, Chen C, Wang X. Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO2 dyade structure. Appl Catal B: Environ, 2012, 111: 303–308

    Article  Google Scholar 

  23. Zhao D, Yang X, Chen C, Wang X. Enhanced photocatalytic degradation of methylene blue on multiwalled carbon nanotubes-TiO2. J Colloid Interf Sci, 2013, 398: 234–239

    Article  CAS  Google Scholar 

  24. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B: Environ, 2012, 125: 331–349

    Article  CAS  Google Scholar 

  25. Zhang S, Peng Y, Jiang W, Liu X, Song X, Pan B, Yu H-Q. Light-triggered reversible sorption of azo dyes on titanium xerogels with photo-switchable acetylacetonato anchors. Chem Commun, 2014, 50: 1086–1088

    Article  CAS  Google Scholar 

  26. Zhang S, Liu X, Wang M, Wu B, Pan B, Yang H, Yu H-Q. Diketone-mediated photochemical processes for target-selective degradation of dye pollutants. Environ Sci Technol Lett, 2014, 1: 167–171

    Article  CAS  Google Scholar 

  27. Zhou L, Jin J, Liu Z, Liang X, Shang C. Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles. J Hazard Mater, 2011, 185: 1045–1052

    Article  CAS  Google Scholar 

  28. Han Y, Quan X, Ruan X, Zhang W. Integrated electrochemically enhanced adsorption with electrochemical regeneration for removal of acid orange 7 using activated carbon fibers. Sep Purif Technol, 2008, 59: 43–49

    Article  CAS  Google Scholar 

  29. Abramian L, El-Rassy H. Adsorption kinetics and thermodynamics of azo-dye Orange II onto highly porous titania aerogel. Chem Eng J, 2009, 150: 403–410

    Article  CAS  Google Scholar 

  30. Zhao S, Zhou F, Li L, Cao M, Zuo D, Liu H. Removal of anionic dyes from aqueous solutions by adsorption of chitosan-based semi-IPN hydrogel composites. Compos Part B: Eng, 2012, 43: 1570–1578

    Article  CAS  Google Scholar 

  31. Marc L. Amine-functionalized titanosilicates prepared by the sol-gel process as adsorbents of the azo-dye Orange II. Ind Eng Chem Res, 2011, 50: 239–246

    Article  Google Scholar 

  32. Stylidi M, Kondarides DI, Verykios XE. Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Appl Catal B: Environ, 2003, 40: 271–286

    Article  CAS  Google Scholar 

  33. Vinodgopl K, Wynkoop D, Kamat P. Environmental photochemistry on semiconductor surfaces: photosensitized degradation of a textile azo dye, Acid Orange 7, on TiO2 particles using visible light. Environ Sci Technol, 1996, 30: 1660–1666

    Article  Google Scholar 

  34. Bauer C, Jacques P, Kalt A. Investigation of the interaction between a sulfonated azo dye (AO7) and a TiO2 surface. Chem Phys Lett, 1999, 307: 397–406

    Article  CAS  Google Scholar 

  35. Klug HP, Alexander LE. X-ray Diffraction Procedure. New York: John Wiley & Sons Inc, 1954

    Google Scholar 

  36. Kormann C, Bahnemann DW, Hoffmann MR. Photolysis of chloroform and other organic molecules in aqueous TiO2 suspensions. Environ Sci Technol, 1991, 25: 494–500

    Article  CAS  Google Scholar 

  37. Iwase M, Yamada K, Kurisaki T, Wakita H. Characterization and photocatalytic activity of nitrogen-doped titanium(IV) oxide prepared by doping titania with TiN powder. Appl Catal A: Gen, 2013, 455: 86–91

    Article  CAS  Google Scholar 

  38. Bu X, Zhang G, Zhang C. Effect of nitrogen doping on anatase-rutile phase transformation of TiO2. Appl Surf Sci, 2012, 258: 7997–8001

    Article  CAS  Google Scholar 

  39. Wang J, Tafen DN, Lewis JP, Hong ZL, Manivannan A, Zhi MJ, Li M, Wu NQ. Origin of photocatalytic activity of nitrogen-doped TiO2. J Am Chem Soc, 2009, 131: 12290–12297

    Article  CAS  Google Scholar 

  40. Saha NC, Tompkins HG. Titanium nitride oxidation chemistry: an X-ray photoelectron spectroscopy study. J Appl Phys, 1992, 72: 3072–3079

    Article  CAS  Google Scholar 

  41. Wang DH, Jia L, Wu XL, Lu LQ, Xu AW. One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity. Nanoscale, 2012, 4: 576–584

    Article  CAS  Google Scholar 

  42. Liu H, Imanishi A, Nakato Y. Mechanisms for photooxidation reactions of water and organic compounds on carbon-doped titanium dioxide, as studied by photocurrent measurements. J Phys Chem C, 2007, 111: 8603–8610

    Article  CAS  Google Scholar 

  43. Park JH, Kim S, Bard AJ. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for dfficient solar water splitting. Nano Lett, 2006, 6: 24–28

    Article  CAS  Google Scholar 

  44. Zhang L, Tse MS, Tan OK, Wang YX, Han M. Facile fabrication and characterization of multi-type carbon-doped TiO2 for visible light-activated photocatalytic mineralization of gaseous toluene. J Mater Chem A, 2013, 1: 4497–4507

    Article  CAS  Google Scholar 

  45. Cong Y, Zhang J, Chen F, Anpo M. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J Phys Chem C, 2007, 111: 6976–6982

    Article  CAS  Google Scholar 

  46. Huang Y, Ho W, Lee S, Zhang L, Li G, Yu JC. Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NOx. Langmuir, 2008, 24: 3510–3516

    Article  CAS  Google Scholar 

  47. Chen D, Jiang Z, Geng J, Wang Q, Yang D. Carbon and nitrogen co-doped TiO2 with enhanced visible light photocatalytic activity. Ind Eng Chem Res, 2007, 46: 2741–2746

    Article  CAS  Google Scholar 

  48. Papirer E, Lacroix R, Donnet JB, Nansé G, Fioux P. XPS study of the halogenation of carbon black-Part 2. Chlorination. Carbon, 1995, 33: 63–72

    Article  CAS  Google Scholar 

  49. Ren W, Ai Z, Jia F, Zhang L, Fan X, Zou Z. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl Catal B: Environ, 2007, 69: 138–144

    Article  CAS  Google Scholar 

  50. Liu Y, Sun D, Development of Fe2O3-CeO2-TiO2γ-Al2O3 as catalyst for catalytic wet air oxidation of methyl orange azo dye under room condition. Appl Catal B: Environ, 2007, 72: 205–211

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujuan Zhang.

Additional information

Contributed equally to this work

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Li, M., Zhang, S. et al. Improved performance and prolonged lifetime of titania-based materials: sequential use as adsorbent and photocatalyst. Sci. China Chem. 58, 1211–1219 (2015). https://doi.org/10.1007/s11426-014-5302-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5302-9

Keywords

Navigation