Skip to main content
Log in

Evaluating the photovoltaic properties of two conjugated polymers synthesized by Suzuki polycondensation and direct C-H activation

  • Articles
  • Special Issue Organic Photovoltaics
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Two conjugated polymers HXS-1 and PDFCDTBT were prepared by direct C-H activation and Suzuki polycondensation and their chemical structures were characterized by 1H NMR spectroscopy. The molecular weight of conjugated polymer synthesized by direct C-H activation is lower than the corresponding polymers prepared by Suzuki polycondensation. Conjugated polymers synthesized by direct C-H activation have considerable solubility in common organic solvents and form amorphous film. The photovoltaic property of conjugated polymers synthesized by direct C-H activation is inferior to the corresponding polymers synthesized by Suzuki polycondensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li G, Shrotriya V, Huang JS, Yao Y, Moriarty T, Emery K, Yang Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater, 2005, 4: 864–868

    Article  CAS  Google Scholar 

  2. Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photon, 2009, 3: 297–302

    Article  CAS  Google Scholar 

  3. Chen JW, Cao Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc Chem Res, 2009, 42: 1709–1718

    Article  CAS  Google Scholar 

  4. Li YF. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc Chem Res, 2012, 45: 723–733

    Article  CAS  Google Scholar 

  5. Thompson BC, Frechet JMJ. Organic photovoltaics-Polymer-fullerene composite solar cells. Angew Chem Int Ed, 2008, 47: 58–77

    Article  CAS  Google Scholar 

  6. Cheng YJ, Yang SH, Hsu CS. Synthesis of conjugated polymers for organic solar cell applications. Chem Rev, 2009, 109: 5868–5923

    Article  CAS  Google Scholar 

  7. He ZC, Zhong CM, Su SJ, Xu M, Wu HB, Cao Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photon, 2012, 6: 591–595

    Google Scholar 

  8. Cai WZ, Gong X, Cao Y. Polymer solar cells: recent development and possible routes for improvement in the performance. Solar Energy Mater Solar Cells, 2010, 94: 114–127

    Article  CAS  Google Scholar 

  9. Berrouard P, Najari A, Pron A, Gendron D, Morin PO, Pouliot JR, Veilleux J, Leclerc M. Synthesis of 5-alkyl 3,4-c thienopyrrole-4,6-dione-based polymers by direct heteroarylation. Angew Chem Int Ed, 2012, 51: 2068–2071

    Article  CAS  Google Scholar 

  10. Burke DJ, Lipomi DJ. Green chemistry for organic solar cells. Energy Environ Sci, 2013, 6: 2053–2066

    Article  CAS  Google Scholar 

  11. Chang SW, Waters H, Kettle J, Kuo ZR, Li CH, Yu CY, Horie M. Pd-catalysed direct arylation polymerisation for synthesis of lowbandgap conjugated polymers and photovoltaic performance. Macromol Rapid Commun, 2012, 33: 1927–1932

    Article  CAS  Google Scholar 

  12. Facchetti A, Vaccaro L, Marrocchi A. Semiconducting polymers prepared by direct arylation polycondensation. Angew Chem Int Ed, 2012, 51: 3520–3523

    Article  CAS  Google Scholar 

  13. Grenier F, Berrouard P, Pouliot JR, Tseng HR, Heeger AJ, Leclerc M. Synthesis of new n-type isoindigo copolymers. Polym Chem, 2013, 4: 1836–1841

    Article  CAS  Google Scholar 

  14. Kowalski S, Allard S, Scherf U. Synthesis of poly(4,4-dialkylcyclopenta 2,1-b:3,4-b′ dithiophene-alt-2,1,3-benzothiadiazole) (PCP-DTBT) in a direct arylation scheme. ACS Macro Lett, 2012, 1: 465–468

    Article  CAS  Google Scholar 

  15. Kuwabara J, Nohara Y, Choi SJ, Fujinami Y, Lu W, Yoshimura K, Oguma J, Suenobu K, Kanbara T. Direct arylation polycondensation for the synthesis of bithiophene-based alternating copolymers. Polym Chem, 2013, 4: 947–953

    Article  CAS  Google Scholar 

  16. Mercier LG, Leclerc M. Direct (hetero)arylation: a new tool for polymer chemists. Acc Chem Res, 2013, 46: 1597–1605

    Article  CAS  Google Scholar 

  17. Okamoto K, Zhang JX, Housekeeper JB, Marder SR, Luscombe CK. C-H arylation reaction: atom efficient and greener syntheses of piconjugated small molecules and macromolecules for organic electronic materials. Macromolecules, 2013, 46: 8059–8078

    Article  CAS  Google Scholar 

  18. Chang SW, Waters H, Kettle J, Horie M. Cyclopentadithiophene-benzothiadiazole oligomers: synthesis via direct arylation, X-ray crystallography, optical properties, solution casted field-effect transistor and photovoltaic characteristics. Org Electron, 2012, 13, 2967–2974

    Article  CAS  Google Scholar 

  19. Jo J, Pron A, Berrouard P, Leong WL, Yuen JD Moon JS, Leclerc M Heeger AJ. A new terthiophene-thienopyrrolodione copolymer-based bulk heterojunction solar cell with high open-circuit voltage. Adv Energy Mater, 2012, 2: 1397–1403

    Article  CAS  Google Scholar 

  20. Rudenko AE, Khlyabich PP, Thompson BC. Random poly(3-hexylthiophene-co-3-cyanothiophene) copolymers via direct arylation polymerization (DArP) for organic solar cells with high open-circuit voltage. ACS Macro Lett, 2014, 3: 387–392

    Article  CAS  Google Scholar 

  21. Wang DH, Pron A, Leclerc M, Heeger AJ. Additive-free bulk-heterojuction solar cells with enhanced power conversion efficiency, comprising a newly designed selenophene-thienopyrrolodione copolymer. Adv Funct Mater, 2013, 23: 1297–1304

    Article  CAS  Google Scholar 

  22. Du C, Li WW, Duan Y, Li CH, Dong HL, Zhu J, Hu WP, Bo ZS. Conjugated polymers with 2,7-linked 3,6-difluorocarbazole as donor unit for high efficiency polymer solar cells. Polym Chem, 2013, 4: 2773–2782

    Article  CAS  Google Scholar 

  23. Qin RP, Li WW, Li CH, Du C, Veit C, Schleiermacher HF, Andersson M, Bo ZS, Liu ZP, Inganas O, Wuerfel U, Zhang FL. A planar copolymer for high efficiency polymer solar cells. J Am Chem Soc, 2009, 131: 14612–14613

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhishan Bo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, H., Lu, H., Fang, T. et al. Evaluating the photovoltaic properties of two conjugated polymers synthesized by Suzuki polycondensation and direct C-H activation. Sci. China Chem. 58, 286–293 (2015). https://doi.org/10.1007/s11426-014-5278-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5278-5

Keywords

Navigation