Skip to main content
Log in

Ordered mesoporous BaCO3/C-catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

BaCO3/C composites were synthesized by a multi-component co-assembly method combined with a carbonization process using phenolic resol as carbon source, barium nitrate as barium precursor, and triblock copolymer Pluronic F127 as template. The synthesized materials were characterized by X-ray diffraction, transmission electron microscopy, N2 physical adsorption, thermogravimetric analysis, and temperature-programmed desorption of CO2. When BaCO3 contents were increased from 9.1 wt% to 44.7 wt%, pore size increased from 3.1 to 4.3 nm and the BET (Brunauer-Emmett-Teller) surface area initially increased to a maximum value of 390 m2 g−1 (at a BaCO3 content of 18.5 wt%) before subsequently decreasing. BaCO3 was well dispersed in the amorphous carbon framework, and no phase separation was observed. The mesoporous Ba-CO3/C composites exhibited high catalytic activities toward the transesterification of glycerol and dimethyl carbonate into glycerol carbonate. A glycerol conversion of 97.8% and a glycerol carbonate selectivity of 98.5% were obtained under the optimized reaction conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zheng Y, Chen X, Shen Y. Commodity chemicals derived from glycerol, an important biorefinery feedstock. Chem Rev, 2008, 108: 5253–5257

    Article  CAS  Google Scholar 

  2. Zhou CH, Beltramini JN, Fan YX, Lu GQ. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemical. Chem Soc Rev, 2008, 37: 527–549

    Article  Google Scholar 

  3. Pagliaro M, Ciriminna R, Kimura H, Rossi M, Pina CD. From glycerol to value-added products. Angew Chem Int Ed, 2007, 46: 4434–4440

    Article  CAS  Google Scholar 

  4. Behr A, Eilting J, Irawadi JK, Leschinski J, Lindner F. Improved utilization of renewable resources: new important derivatives of glycerol. Green Chem, 2008, 10: 13–30

    Article  CAS  Google Scholar 

  5. Chai SH, Wang HP, Liang Y, Xu BQ. Sustainable production of acrolein: investigation of solid acid-base catalysts for gas-phase dehydration of glycerol. Green Chem, 2007, 9: 1130–1136

    Article  CAS  Google Scholar 

  6. Tsukuda E, Sato S, Takahashi R, Sodesawa T. Production of acrolein from glycerol over silica-supported heteropoly acids. Catal Commun, 2007, 8: 1349–1353

    Article  CAS  Google Scholar 

  7. Xia S, Yuan Z, Wang L, Chen P, Hou Z. Hydrogenolysis of glycerol on bimetallic Pd-Cu/solid-base catalysts prepared via layered double hydroxides precursor. Appl Catal A: Gen, 2011, 403: 173–182

    Article  CAS  Google Scholar 

  8. Zhu S, Gao X, Zhu Y, Zhu Y, Xiang X, Hu C, Li Y. Alkaline metals modified Pt-H4SiW12O40/ZrO2 catalysts for the selective hydrogenolysis of glycerol to 1,3-propanediol. Appl Catal B: Environ, 2013, 140: 60–67

    Article  Google Scholar 

  9. Tsuji A, Rao KTV, Nishimura S, Takagaki A, Ebitani K. Selective oxidation of glycerol by using a hydrotalcite-supported platinum catalyst under atmospheric oxygen pressure in water. ChemSusChem, 2011, 4: 542–548

    Article  CAS  Google Scholar 

  10. Brett GL, He Q, Hammond C, Miedziak PJ, Dimitratos N, Sankar M, Herzing AA, Conte M, Lopez-Sanchez JA, Kiely CJ, Knight DW, Taylor SH, Hutchings GJ. Selective oxidation of glycerol by highly active bimetallic catalysts at ambient temperature under base-free conditions. Angew Chem Int Ed, 2011, 50: 10136–10139

    Article  CAS  Google Scholar 

  11. Liang D, Gao J, Sun H, Chen P, Hou Z, Zheng X. Selective oxidation of glycerol with oxygen in a base-free aqueous solution over MWNTs supported Pt catalysts. Appl Catal B: Environ, 2011, 106: 423–432

    Article  CAS  Google Scholar 

  12. Gómez-Jiménez-Aberasturi O, Ochoa-Gómez JR, Pesquera-Rodríguez A, Ramírez-López C, Alonso-Vicario A, Torrecilla-Soria J. Solvent-free synthesis of glycerol carbonate and glycidol from 3-chloro-1,2-propanediol and potassium (hydrogen) carbonate. J Chem Technol Biotechnol, 2010, 85: 1663–1670

    Article  Google Scholar 

  13. Rokicki G, Rakoczy P, Parzuchowski P, Sobiecki M. Hyperbranched aliphatic polyethers obtained from environmentally benign monomer: glycerol carbonate. Green Chem, 2005, 7: 529–539

    Article  CAS  Google Scholar 

  14. Kim SC, Kim YH, Lee H, Yoon DY, Song BK. Lipase-catalyzed synthesis of glycerol carbonate from renewable glycerol and dimethyl carbonate through transesterification. J Mol Catal B: Enzym, 2007, 49: 75–78

    Article  CAS  Google Scholar 

  15. Naik PU, Laetitia P, Karima R, Michel P, Laurent P. Imidazolium-2-carboxylate as an efficient, expeditious and eco-friendly organocatalyst for glycerol carbonate synthesis. Adv Syn Catal, 2009, 351: 1753–1756

    Article  CAS  Google Scholar 

  16. Simanjuntak FSH, Kim TK, Lee SD, Ahna BS, Kim HS, Lee H. CaO-catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate: isolation and characterization of an active Ca species. Appl Catal A: Gen, 2011, 401: 220–225

    Article  CAS  Google Scholar 

  17. Ochoa-Gómez JR, Gómez-Jiménez-Aberasturi O, Maestro-Madurga B, Pesquera-Rodríguez A, Ramirez-Lopez C, Lorenzo-Ibarreta L, Torrecilla-Soria J, Villarán-Velasco MC. Synthesis of glycerol carbonate from glycerol and dimethyl carbonate by transesterification: catalyst screening and reaction optimization. Appl Catal A: Gen, 2009, 366: 315–324

    Article  Google Scholar 

  18. Bancquart S, Vanhove C, Pouilloux Y, Barrault J. Glycerol transesterification with methyl stearate over solid basic catalysts: I. Relationship between activity and basicity. Appl Catal A: Gen, 2001, 218: 1–11

    Article  CAS  Google Scholar 

  19. Zhen L, Xia S, Hou Z, Zhang M, Hou Z. Transesterification of glycerol with dimethyl carbonate over Mg-Al hydrotalicites. Chin J Catal, 2014, 35: 310–318

    Article  Google Scholar 

  20. Pan S, Zhen L, Nie R, Xia S, Chen P, Hou Z. Transesterification of glycerol with dimethyl carbonate over Na-based zeolites. Chin J Catal, 2012, 33: 1772–1777

    Article  CAS  Google Scholar 

  21. Bai R, Zhang H, Mei F, Wang S, Li T, Gu Y, Li G. One-pot synthesis of glycidol from glycerol and dimethyl carbonate over a highly efficient and easily available solid catalyst NaAlO2. Green Chem, 2013, 15: 2929–2934

    Article  CAS  Google Scholar 

  22. Ochoa-Gómez JR, Gómez-Jiménez-Aberasturi O, Ramírez-Lópeza C, Maestro-Madurga B. Synthesis of glycerol 1,2-carbonate by transesterification of glycerol with dimethyl carbonate using triethylamine as a facile separable homogeneous catalyst. Green Chem, 2012, 14: 3368–3376

    Article  Google Scholar 

  23. Climent MJ, Corma A, De Frutos P, Iborra S, Noy M, Velty A. Chemicals from biomass: synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts: the role of acid-base pairs. J Catal, 2010, 269: 140–149

    Article  CAS  Google Scholar 

  24. Aresta M, Dibenedetto A, Nocito F, Ferragina C. Valorization of bio-glycerol: new catalytic materials for the synthesis of glycerol carbonate via glycerolysis of urea. J Catal, 2009, 268: 106–114

    Article  CAS  Google Scholar 

  25. George J, Patel Y, Pillai SM, Munshi P. Methanol assisted selective formation of 1,2-glycerol carbonate from glycerol and carbon dioxide using nBu2SnO as a catalyst. J Mol Catal A: Chem, 2009, 304: 1–7

    Article  CAS  Google Scholar 

  26. Aresta M, Dibenedetto A, Nocito F, Pastore C. A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: the role of the catalyst, solvent and reaction conditions. J Mol Catal A: Chem, 2006, 257: 149–153

    Article  CAS  Google Scholar 

  27. Mizuno T, Nakai T, Miharau M. New synthesis of glycerol carbonate from glycerol using sulfur-assisted carbonylation with carbon monoxide. Heteroatom Chem, 2010, 21: 99–102

    Article  CAS  Google Scholar 

  28. Wang LY, Liu Y, Liu CL, Yang RZ, Dong WS. An efficient catalytic system for the synthesis of glycerol carbonate by oxidative carbonylation of glycerol. Sci China Chem, 2013, 56: 1455–1462

    Article  Google Scholar 

  29. Hu J, Gu Y, Guan Z, Li J, Mo W, Li T, Li G. Oxidative carbonylation of glycerol to glycerol carbonate catalyzed by PdCl2(phen)/KI. ChemSusChem, 2011, 4: 1767–1772

    Article  CAS  Google Scholar 

  30. Malyaadri M, Jagadeeswaraiah K, Sai Prasad PS, Lingaiah N. Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over Mg/Al/Zr catalysts. Appl Catal A: Gen, 2011, 401: 153–157

    Article  CAS  Google Scholar 

  31. Takagaki A, Iwatani K, Nishimura S, Ebitani K. Synthesis of glycerol carbonate from glycerol and dialkyl carbonates using hydrotalcite as a reusable heterogeneous base catalyst. Green Chem, 2010, 12: 578–581

    Article  CAS  Google Scholar 

  32. Bai R, Wang Y, Wang S, Mei F, Li T, Li G. Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by NaOH/γ-Al2O3. Fuel Pro Technol, 2013, 106: 209–214

    Article  CAS  Google Scholar 

  33. Li D, Zhou H, Honma I. Design and synthesis of selfordered mesoporous nanocomposite through controlled in situ crystallization. Nat Mater, 2004, 3: 65–72

    Article  CAS  Google Scholar 

  34. Lu AH, Li W, Hou Z, Schüth F. Molecular level dispersed Pd clusters in the carbon walls of ordered mesoporous carbon as a highly selective alcohol oxidation catalyst. Chem Commun, 2007: 1038–1040

    Google Scholar 

  35. Yao J, Li L, Song H, Liu C, Chen X. Synthesis of magnetically separable ordered mesoporous carbons from F127/[Ni(H2O)6](NO3)2/resorcinol-formaldehyde composites. Carbon, 2009, 47: 436–444

    Article  CAS  Google Scholar 

  36. Li JS, Gu J, Li HJ, Liang Y, Hao YX, Sun XY, Wang LJ. Synthesis of highly ordered Fe-containing mesoporous carbon materials using soft templating routes. Micropor Mesopor Mater, 2010, 128: 144–149

    Article  CAS  Google Scholar 

  37. Xu J, Wang A, Wang X, Su D, Zhang T. Characterization, and catalytic application of highly ordered mesoporous alumina-carbon nanocomposites. Nano Res, 2011, 4: 50–60

    Article  CAS  Google Scholar 

  38. Wang H, Wang AQ, Wang XD, Zhang T. One-pot synthesized MoC imbedded in ordered mesoporous carbon as a catalyst for N2H4 decomposition. Chem Commun, 2008: 2565-2567

  39. Ji ZH, Liang SG, Jiang YB, Li H, Liu ZM, Zhao T. Synthesis and characterization of ruthenium-containing ordered mesoporous carbon with high specific surface area. Carbon, 2009, 47: 2194–2199

    Article  CAS  Google Scholar 

  40. Li Q, Xu J, Wu Z, Feng D, Yang J, Wei J, Wu Q, Tu B, Cao Y, Zhao D. Facile synthesis of highly stable and well-dispersed mesoporous ZrO2/carbon composites with high performance in oxidative dehydrogenation of ethylbenzene. Phys Chem Chem Phys, 2010, 12: 10966–11003

    Google Scholar 

  41. Wu ZX, Hao N, Xiao GK, Liu LY, Webley P, Zhao DY. One-pot generation of mesoposous carbon supported nanocrystalline calcium oxides capable of efficient CO2 capture over a wide range of temperatures. Phys Chem Chem Phys, 2011, 13: 2495–2503

    Article  CAS  Google Scholar 

  42. She L, Li J, Wan Y, Yao XD, Tu B, Zhao DY. Synthesis ordered mesoporous MgO/carbon composites by one-pot assembly of amphiphilic triblock copolymers. J Mater Chem, 2011, 21: 795–800

    Article  CAS  Google Scholar 

  43. Chakravarti R, Mano A, Iwai H, Aldeyab SS, Kumar RP, Kantam ML, Vinu A. Functionalization of mesoporous carbon with superbasic MgO nanoparticles for the efficient synthesis of sulfinamides. Chem Eur J, 2011, 17: 6673–6682

    Article  CAS  Google Scholar 

  44. Liu R, Ren Y, Shi Y, Zhang F, Zhang L, Tu B, Zhao DY. Controlled synthesis of ordered mesoporous C-TiO2 nanocomposites with crystalline titania frameworks from organic-inorganic-amphiphilic coassembly. Chem Mater, 2008, 20: 1140–1146

    Article  CAS  Google Scholar 

  45. Yu T, Deng YH, Wang L, Liu RL, Zhang LJ, Tu B, Zhao DY. Ordered mesoporous nanocrystalline titanium-carbide/carbon composites from in situ carbothermal reduction. Adv Mater, 2007, 19: 2301–2306

    Article  CAS  Google Scholar 

  46. Liu RL, Shi YF, Wan Y, Meng Y, Zhang FQ, Gu D, Chen ZX, Tu B, Zhao DY. Triconstituent coassembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas. J Am Chem Soc, 2006, 128: 11652–11662

    Article  CAS  Google Scholar 

  47. Hu QY, Kou R, Pang JB, Ward TL, Cai M, Yang ZZ, Lu YF, Tang J. Mesoporous carbon/silica nanocomposite through multi-component assembly. Chem Commun, 2007: 601-603

  48. Gorka J, Jaroniec M. Incorporation of inorganic nanoparticles into mesoporous carbons synthesized by soft templating. J Phys Chem C, 2008, 112: 11657–11660

    Article  CAS  Google Scholar 

  49. Jaroniec M, Gorka J, Choma J, Zawislak A. Synthesis and properties of mesoporous carbons with high loadings of inorganic species. Carbon, 2009, 47: 3034–3040

    Article  CAS  Google Scholar 

  50. Liu L, Deng QF, Ma TY, Lin XZ, Hou XX, Liu YP, Yuan ZY. Ordered mesoporous carbons: citric acid-catalyzed synthesis, nitrogen doping and CO2 capture. J Mater Chem, 2011, 21: 16001–16009

    Article  CAS  Google Scholar 

  51. Liu CL, Dong WS, Song JR, Liu L. Evolution of microstructure and properties of phenolic fibers during carbonization. Mater Sci Eng A, 2007, 459: 347–354

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensheng Dong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, C., Sun, J. et al. Ordered mesoporous BaCO3/C-catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate. Sci. China Chem. 58, 708–715 (2015). https://doi.org/10.1007/s11426-014-5173-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5173-0

Keywords

Navigation