Skip to main content
Log in

Nitrogen-doped graphene as an excellent candidate for selective gas sensing

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The toxic gases, such as CO and NO, are highly dangerous to human health and even cause the death of person and animals in a tiny amount. Therefore, it is very necessary to develop the toxic gas sensors that can instantly monitor these gases. In this work, we have used the first-principles calculations to investigate adsorption of gases on defective graphene nanosheets to seek a suitable material for CO sensing. Result indicates that the vancancy graphene can not selectivly sense CO from air, because O2 in air would disturb the sensing signals of graphene for CO, while the nitrogen-doped graphene is an excellent candidate for selectivly sensing CO from air, because only CO can be chemisorbed on the pyridinic-like N-doped graphene accompanying with a large charge transfer, which can serve as a useful electronic signal for CO sensing. Even in the environment with NO, the N-doped graphene can also detect CO selectively. Therefore, the N-doped graphene is an excellent material for selectively sensing CO, which provides useful information for the design and fabrication of the CO sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dai H. Carbon nanotubes: synthesis, integration and properties. Acc Chem Res, 2002, 35: 1035–1044

    Article  CAS  Google Scholar 

  2. Snow ES, Perkins FK, Robinson JA. Chemical vapor detection using single-walled carbon nanotube. Chem Soc Rev, 2006, 35: 790–798

    Article  CAS  Google Scholar 

  3. Kauffman DR, Sorescu DC, Schofield DP, Allen BL, Jordan KD, Star A. Understanding the sensor response of metal decorated carbon nanotubes. Nano Lett, 2010, 10: 958–963

    Article  CAS  Google Scholar 

  4. Li K, Wang W, Cao DP. Metal (Pd, Pt)-decorated carbon nanotubes for CO and NO sensing. Sensor Actuat B-Chem, 2011, 159: 171–177

    Article  CAS  Google Scholar 

  5. Peng S, Cho K. Ab initio study of doped carbon nanotube sensors. Nano Lett, 2003, 3: 513–517

    Article  CAS  Google Scholar 

  6. Wu RQ, Yang M, Lu YH, Feng YP, Huang ZG, Wu Q, Silicon carbide nanotubes as potential gas sensors for CO and HCN detection. J Phys Chem C, 2008, 112: 15985–15988

    Article  CAS  Google Scholar 

  7. Gao G, Kang HS. First principles study of NO and NNO chemisorption on silicon carbide nanotubes and other nanotubes. J Chem Theory Comput, 2008, 4: 1690–1697

    Article  CAS  Google Scholar 

  8. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 2004: 306: 666–669

    Article  CAS  Google Scholar 

  9. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS. Detection of individual gas molecules adsorbed on graphene. Nat Mater, 2007, 9: 652–655

    Article  Google Scholar 

  10. Geim A, Novoselov KS. The rise of graphene. Nat Mater, 2007, 6: 183–191

    Article  CAS  Google Scholar 

  11. Yuan QZ, Zhao YP, Li LM, Wang TH. Ab initio study of ZnO-based gas-sensing mechanisms: surface reconstruction and charge transfer. J Phys Chem C, 2009, 113: 6107–6113

    Article  CAS  Google Scholar 

  12. Wehling TO, Novoselov KS, Morozov SV, Vdovin EE, Katsnelson MI, Geim AK, Lichtenstein AI. Molecular doping of graphene. Nano Lett, 2008, 8: 173–177

    Article  CAS  Google Scholar 

  13. Li K, Wang W, Cao DP. New chemical sensor for CO and NO: Silicon nanotube. J Phys Chem C, 2011, 115: 12015–12022

    Article  CAS  Google Scholar 

  14. Xiang Z, Cao D. Synthesis of luminescent covalent organic polymers for detecting nitroaromatic explosives and small organic molecuels. Macromol Rapid Comm, 2012, 33: 1184–1190

    Article  CAS  Google Scholar 

  15. Li Y, Zhou Z, Shen P and Chen Z. Spin gapless semiconductormetal-half metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano, 2009, 3: 1952–1958

    Article  CAS  Google Scholar 

  16. Tang Q, Zhou Z and Chen Z, Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale, 2013, 5: 4541–4583

    Article  CAS  Google Scholar 

  17. Leenaerts O, Partoens B; Peeters FM. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study. Phys Rev B, 2008, 77: 125416

    Article  Google Scholar 

  18. Khalap VR, Sheeps T, Kane AA, Collins PG. Hydrogen sensing and sensitivity of palladium-decorated single-walled carbon nanotubes with defects. Nano Lett, 2010, 10: 896–901

    Article  CAS  Google Scholar 

  19. Zhou M, Lu YH, Cai YQ, Zhang C, Feng YP. Adsorption of gas molecules on transition metal embedded graphene: a search for high-performance graphene-based catalysts and gas sensors. Nanotechnology, 2011, 22: 385502

    Article  Google Scholar 

  20. Chi M, Zhao YP. Adsorption of formaldehyde molecule on intrinsic and Al-doped graphene: a first-principles study. Comp Mater Sci, 2009, 46: 1085–1090

    Article  CAS  Google Scholar 

  21. Banhart F, Kotakoski J, Krasheninnikov AV. Structural defects in graphene. ACS Nano, 2011, 5: 26–41

    Article  CAS  Google Scholar 

  22. Sanyal B, Eriksson O, Jansson U, Grennberg H. Molecular adsorption in graphene with divacancy defects. Phys Rev B, 2009, 79: 113409

    Article  Google Scholar 

  23. Wang B, Pantelides ST. Controllable healing of defects and nitrogen doping of graphene by CO and NO molecules. Phys Rev B, 2011, 83: 245403

    Article  Google Scholar 

  24. Geng DS, Yang SL, Zhang Y, Yang JL, Liu J, Li RY, Sham T-K, Sun XL, Ye SY, Knights S. Nitrogen doping effects on the structure of graphene. Appl Surf Sci, 2011, 257: 9193–9198

    Article  CAS  Google Scholar 

  25. Ma C, Shao X, Cao D. Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J Mater Chem, 2012, 22: 8911–8915

    Article  CAS  Google Scholar 

  26. Wang HB, Zhang CJ, Liu ZH, Wang L, Han PX, Xu HX, Zhang kj, Bong SM, Yao JH, Cui GL. Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J Mater Chem, 2011, 21: 5430–5434

    Article  CAS  Google Scholar 

  27. Zhang P, Sun F, Xiang Z, Shen Z, Yun J and Cao D. ZIF-derived in situ nitrogen-doped porous carbons as metal-free electrocatalysts for oxygen reduction reaction. Energy Environ Sci, 2014, 7: 442–450

    Article  CAS  Google Scholar 

  28. Kresse G. Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B, 1993, 47: 558–561

    Article  CAS  Google Scholar 

  29. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59: 1758–1775

    Article  CAS  Google Scholar 

  30. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  31. Tang W, Sanville E, Henkelman G. A grid-based Bader analysis algorithm without lattice bias. J Phys-Condens Mat, 2009, 21: 084204

    Article  CAS  Google Scholar 

  32. Berashevich J, Chakraborty T. Influence of adsorbates on the electronic and magnetic properties of graphane with H-vacancy defects. Phys Rev B, 2010, 82: 134415

    Article  Google Scholar 

  33. Şahin H, Ataca C, Ciraci S. Electronic and magnetic properties of graphane nanoribbons. Phys Rev B, 2010, 81: 205417

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DaPeng Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, C., Shao, X. & Cao, D. Nitrogen-doped graphene as an excellent candidate for selective gas sensing. Sci. China Chem. 57, 911–917 (2014). https://doi.org/10.1007/s11426-014-5066-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5066-2

Keywords

Navigation