Skip to main content
Log in

Recent advances in fabrication of monolayer colloidal crystals and their inverse replicas

  • Reviews
  • Progress of Projects Supported by NSFC Special Issue Chemical Methodology
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Monolayer colloidal crystals (MCCs) are two-dimensional (2D) colloidal crystals consisting of a monolayer of monodisperse colloidal particles arrayed with a 2D periodic order. In recent years, MCCs have attracted intensive interest because they can act as 2D photonic crystals and be used as versatile templates for fabrication of various 2D nanostructure arrays. In this review, we provide an overview of the recent progress in the controllable fabrication of MCCs and their inverse replicas. First, some newly-developed methods for the self-assembly of MCCs based on different strategies including interfacial assembly and convective assembly are introduced. Second, some representative novel methods regarding the fabrication of various functional 2D inverse replicas of MCCs, such as 2D arrays of nanobowls, nanocaps, and hollow spheres, as well as 2D monolayer inverse opals (MIOs), are described. In addition, the potential applications of MCCs and their inverse replicas are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marlow F, Muldarisnur, Sharifi P, Brinkmann R, Mendive C. Opals: Status and prospects. Angew Chem Int Ed, 2009, 48: 6212–6233

    Article  CAS  Google Scholar 

  2. Moon JH, Yang S. Chemical aspects of three-dimensional photonic crystals. Chem Rev, 2010, 110: 547–574

    Article  CAS  Google Scholar 

  3. Li F, Josephson DP, Stein A. Colloidal assembly: The road from particles to colloidal molecules and crystals. Angew Chem Int Ed, 2011, 50: 360–388

    Article  CAS  Google Scholar 

  4. Ge J, Yin Y. Responsive photonic crystals. Angew Chem Int Ed, 2011, 50: 1492–1522

    Article  CAS  Google Scholar 

  5. von Freymann G, Kitaev V, Lotsch BV, Ozin GA. Bottom-up assembly of photonic crystals. Chem Soc Rev, 2013, 42: 2528–2554

    Article  Google Scholar 

  6. Stein A, Wilson BE, Rudisill SG. Design and functionality of colloidal-crystal-templated materials-Chemical applications of inverse opals. Chem Soc Rev, 2013, 42: 2763–2803

    Article  CAS  Google Scholar 

  7. Zhang J, Li Y, Zhang X, Yang B. Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays. Adv Mater, 2010, 22: 4249–4269

    Article  CAS  Google Scholar 

  8. Ye X, Qi L. Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: Controllable fabrication, assembly, and applications. Nano Today, 2011, 6: 608–631

    Article  CAS  Google Scholar 

  9. Yang SM, Jang SG, Choi DG, Kim S, Yu HK. Nanomachining by Colloidal Lithography. Small, 2006, 2: 458–475

    Article  CAS  Google Scholar 

  10. Zhang G, Wang D. Colloidal lithography-The art of nanochemical patterning. Chem-Asian J, 2009, 4: 236–245

    Article  CAS  Google Scholar 

  11. Yang S, Lei Y. Recent progress on surface pattern fabrications based on monolayer colloidal crystal templates and related applications. Nanoscale, 2011, 3: 2768–2782

    Article  CAS  Google Scholar 

  12. Li Y, Duan G, Liu G, Cai W. Physical processes-aided periodic micro/nanostructured arrays by colloidal template technique: Fabrication and applications. Chem Soc Rev, 2013, 42: 3614–3627

    Article  CAS  Google Scholar 

  13. Li L, Zhai T, Zeng H, Fang X, Bando Y, Golberg D. Polystyrene sphere-assisted one-dimensional nanostructure arrays: Synthesis and applications. J Mater Chem, 2011, 21: 40–56

    Article  CAS  Google Scholar 

  14. Li Y, Koshizaki N, Cai W. Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices. Coord Chem Rev, 2011, 255: 357–373

    Article  CAS  Google Scholar 

  15. Denkov ND, Velev OD, Kralchevsky PA, Ivanov IB, Yoshimura H, Nagayama K. Two-dimensional crystallization. Nature, 1993, 361: 26–26

    Article  Google Scholar 

  16. Moon GD, Lee TI, Kim B, Chae G, Kim J, Kim S, Myoung JM, Jeong U. Assembled monolayers of hydrophilic particles on water surfaces. ACS Nano, 2011, 5: 8600–8612

    Article  CAS  Google Scholar 

  17. Li C, Hong GS, Wang PW, Yu DP, Qi LM. Wet chemical approaches to patterned arrays of well-aligned ZnO nanopillars assisted by monolayer colloidal crystals. Chem Mater, 2009, 21: 891–897

    Article  CAS  Google Scholar 

  18. Xu LA, Li H, Jiang X, Wang JX, Li L, Song YL, Jiang L. Synthesis of amphiphilic mushroom cap-shaped colloidal particles towards fabrication of anisotropic colloidal crystals. Macromol Rapid Commun, 2010, 31: 1422–1426

    Article  CAS  Google Scholar 

  19. Zhang J-T, Wang L, Lamont DN, Velankar SS, Asher SA. Fabrication of large-area two-dimensional colloidal crystals. Angew Chem Int Ed, 2012, 51: 6117–6120

    Article  CAS  Google Scholar 

  20. Zhang J-T, Wang L, Luo J, Tikhonov A, Kornienko N, Asher SA. 2-D array photonic crystal sensing motif. J Am Chem Soc, 2011, 133: 9152–9155

    Article  CAS  Google Scholar 

  21. Chen H, Hu L, Fang X, Wu L. General fabrication of monolayer SnO2 nanonets for high-performance ultraviolet photodetectors. Adv Funct Mater, 2012, 22: 1229–1235

    Article  CAS  Google Scholar 

  22. Born P, Munoz A, Cavelius C, Kraus T. Crystallization mechanisms in convective particle assembly. Langmuir, 2012, 28: 8300–8308

    Article  CAS  Google Scholar 

  23. Ng ECH, Chin KM, Wong CC. Controlling inplane orientation of a monolayer colloidal crystal by meniscus pinning. Langmuir, 2011, 27: 2244–2249

    Article  CAS  Google Scholar 

  24. Sun J, Tang CJ, Zhan P, Han, ZL, Cao ZS, Wang ZL. Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces. Langmuir, 2010, 26: 7859–7864

    Article  CAS  Google Scholar 

  25. Ye R, Ye Y-H, Zhou Z, Xu H. Gravity-assisted convective assembly of centimeter-sized uniform two-dimensional colloidal crystals. Langmuir, 2013, 29: 1796–1801

    Article  CAS  Google Scholar 

  26. Singh G, Pillai S, Arpanaei A, Kingshott P. Layer-by-layer growth of multicomponent colloidal crystals over large areas. Adv Funct Mater, 2011, 21: 2556–2563

    Article  CAS  Google Scholar 

  27. Kim JJ, Li Y, Lee EJ, Cho SO. Fabrication of size-controllable hexagonal non-close-packed colloidal crystals and binary colloidal crystals by pyrolysis combined with plasma-electron coirradiation of polystyrene colloidal monolayer. Langmuir, 2011, 27: 2334–2339

    Article  CAS  Google Scholar 

  28. Yu J, Yan Q, Shen D. Co-self-assembly of binary colloidal crystals at the air-water interface. ACS Appl Mater Interfaces, 2010, 2: 1922–1926

    Article  CAS  Google Scholar 

  29. Dai Z, Li Y, Duan G, Jia L, Cai W. Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface. ACS Nano, 2012, 6: 6706–6716

    Article  CAS  Google Scholar 

  30. Sun X, Li Y, Zhang TH, Ma YQ, Zhang Z. Fabrication of large two-dimensional colloidal crystals via self-assembly in an attractive force gradient. Langmuir, 2013, 29: 7216–7220

    Article  CAS  Google Scholar 

  31. Cai Z, Liu YJ, Leong ESP, Teng J, Lu X. Highly ordered and gap controllable two-dimensional non-close-packed colloidal crystals and plasmonic-photonic crystals with enhanced optical transmission. J Mater Chem, 2012, 22: 24668–24675

    Article  CAS  Google Scholar 

  32. Cai Z, Teng J, Xia D, Zhao XS. Self-assembly of crack-free silica colloidal crystals on patterned silicon substrates. J Phys Chem C, 2011, 115: 9970–9976

    Article  CAS  Google Scholar 

  33. Li C, Hong G, Qi L. Nanosphere lithography at the gas/liquid interface: A general approach toward free-standing high-quality nanonets. Chem Mater 2010, 22: 476–481

    Article  CAS  Google Scholar 

  34. Wang X, Lao C, Graugnard E, Summers CJ, Wang ZL. Large-size liftable inverted-nanobowl sheets as reusable masks for nanolithiography. Nano Lett, 2005, 5: 1784–1788

    Article  CAS  Google Scholar 

  35. Zhang H, Duan G, Liu G. Li Y, Xu X, Dai Z, Wang J, Cai W. Layer-controlled synthesis of WO3 ordered nanoporous films for optimum electrochromic application. Nanoscale, 2013, 5: 2460–2468

    Article  CAS  Google Scholar 

  36. Yang S, Lapsley MI, Cao B, Zhao C, Zhao Y, Hao Q, Kiraly B, Scott J, Li W, Wang L, Lei Y, Huang TJ. Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition. Adv Funct Mater, 2013, 23: 720–730

    Article  CAS  Google Scholar 

  37. Pernites RB, Foster EL, Felipe MJL, Robinson M, Advincula RC. Patterned surfaces combining polymer brushes and conducting polymer via colloidal template electropolymerization. Adv Mater, 2011, 23: 1287–1292

    Article  CAS  Google Scholar 

  38. Hong G, Li C, Qi LM. Facile fabrication of two-dimensionally ordered macroporous silver thin films and their application in molecular sensing. Adv Funct Mater, 2010, 20: 3774–3783

    Article  CAS  Google Scholar 

  39. Li C, Hong G, Yu H, Qi L. Facile fabrication of honeycomb-patterned thin films of amorphous calcium carbonate and mosaic calcite. Chem Mater, 2010, 22: 3206–3211

    Article  CAS  Google Scholar 

  40. Ye X, Li Y, Dong J, Xiao J, Ma Y, Qi L. Facile synthesis of ZnS nanobowl arrays and their applications as 2D photonic crystal sensors. J Mater Chem C, 2013, 1: 6112–6119

    Article  CAS  Google Scholar 

  41. Fujii S, Kappl M, Butt H-J, Sugimoto T, Nakamura Y. Soft Janus colloidal crystal film. Angew Chem Int Ed, 2012, 51: 9809–9813

    Article  CAS  Google Scholar 

  42. Elias J, Levy-Clement C, Bechelany M, Michler J, Wang GY, Wang Z, Philippe L. Hollow urchin-like ZnO thin films by electrochemical deposition. Adv Mater, 2010, 22: 1607–1612

    Article  CAS  Google Scholar 

  43. Liu G, Cai W, Kong L, Duan G, Li Y, Wang J, Zuo G, Cheng Z. Standing Ag nanoplate-built hollow microsphere arrays: Controllable structural parameters and strong SERS performances. J Mater Chem, 2012, 22: 3177–3184

    Article  CAS  Google Scholar 

  44. Yang S, Cai W, Kong L, Lei Y. Surface nanometer-scale patterning in realizing large-scale ordered arrays of metallic nanoshells with well-defined structures and controllable properties. Adv Funct Mater, 2010, 20: 2527–2533

    Article  CAS  Google Scholar 

  45. Liu G, Li Y, Duan G, Wang J, Liang C, Cai W. Tunable surface plasmon resonance and strong SERS performances of Au opening-nanoshell ordered arrays. ACS Appl Mater Interfaces, 2012, 4: 1–5

    Article  Google Scholar 

  46. Im H, Bantz KC, Lee SH, Johnson TW, Haynes CL, Oh SH. Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing. Adv Mater, 2013, 25: 2678–2685

    Article  CAS  Google Scholar 

  47. Zhao Y, Zhang XJ, Ye J, Chen LM, Lau SP, Zhang WJ, Lee ST. Metallo-dielectric photonic crystals for surface-enhanced Raman scattering. ACS Nano, 2011, 5: 3027–3033

    Article  CAS  Google Scholar 

  48. Li J, Qin Y, Jin C, Li Y, Shi D, Schmidt-Mende L, Gan L, Yang J. Highly ordered monolayer/bilayer TiO2 hollow sphere films with widely tunable visible-light reflection and absorption bands. Nanoscale, 2013, 5: 5009–5016

    Article  CAS  Google Scholar 

  49. Hyun WJ, Lee HK, Oh SS, Hess O, Choi C-G, Im SH, Park OO. Two-dimensional TiO2 inverse opal with a closed top surface structure for enhanced light extraction from polymer light-emitting diodes. Adv Mater, 2011, 23: 1846–1850

    Article  CAS  Google Scholar 

  50. Li C, Lotsch BV. Stimuli-responsive 2D polyelectrolyte photonic crystals for optically encoded pH sensing. Chem Commun, 2012, 48: 6169–6171

    Article  CAS  Google Scholar 

  51. Zhang J-T, Smith N, Asher SA. Two-dimensional photonic crystal surfactant detection. Anal Chem, 2012, 84: 6416–6420

    Article  CAS  Google Scholar 

  52. Zhang J-T, Chao X, Liu X, Asher SA. Two-dimensional array Debye ring diffraction protein recognition sensing. Chem Commun, 2013, 49: 6337–6339

    Article  CAS  Google Scholar 

  53. Fang Y, Seong NH, Dlott DD. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science, 2008, 321: 388–392

    Article  CAS  Google Scholar 

  54. Farcau C, Astilean S. Mapping the SERS efficiency and hot-spots localization on gold film over nanospheres substrates. J Phys Chem C, 2010, 114: 11717–11722

    Article  CAS  Google Scholar 

  55. Yang SC, Yang DJ, Kim J, Hong JM, Kim HG, Kim ID, Lee H. Hollow TiO2 hemispheres obtained by colloidal templating for application in dye-sensitized solar cells. Adv Mater, 2008, 20: 1059–1064

    Article  CAS  Google Scholar 

  56. Romanov SG, Korovin AV, Regensburger A, Peschel U. Hybrid colloidal plasmonic-photonic crystals. Adv Mater, 2011, 23: 2515–2533

    Article  CAS  Google Scholar 

  57. Ding B, Hrelescu C, Arnold N, Isic G, Klar TA. Spectral and directional reshaping of fluorescence in large area self-assembled plasmonic-photonic crystals. Nano Lett, 2013: 13, 378–386

    Article  CAS  Google Scholar 

  58. Xiong Y, Tang Z. Role of self-assembly in construction of inorganic nanostructural materials. Sci China Chem, 2012, 55: 2272–2282

    Article  CAS  Google Scholar 

  59. Hu S, Wang X. From cluster assembly to ultrathin nanocrystals and complex nanostructures. Sci China Chem, 2012, 55: 2257–2271

    Article  CAS  Google Scholar 

  60. Liu JW, Liang HW, Yu SH. Macroscopic-scale assembled nanowire thin films and their functionalities. Chem Rev, 2012, 112: 4770–4799

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiMin Qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, X., Qi, L. Recent advances in fabrication of monolayer colloidal crystals and their inverse replicas. Sci. China Chem. 57, 58–69 (2014). https://doi.org/10.1007/s11426-013-5018-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-5018-2

Keywords

Navigation