Skip to main content
Log in

Six-dimensional potential energy surface of the dissociative chemisorption of HCl on Au(111) using neural networks

  • Articles
  • Special Issue Chemical Methodology
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We constructed a six-dimensional potential energy surface (PES) for the dissociative chemisorption of HCl on Au(111) using the neural networks method based on roughly 70000 energies obtained from extensive density functional theory (DFT) calculations. The resulting PES is accurate and smooth, based on the small fitting errors and good agreement between the fitted PES and the direct DFT calculations. Time-dependent wave packet calculations show that the potential energy surface is very well converged with respect to the number of DFT data points, as well as to the fitting process. The dissociation probabilities of HCl initially in the ground rovibrational state from six-dimensional quantum dynamical calculations are quite different from the four-dimensional fixed-site calculations, indicating it is essential to perform full-dimensional quantum dynamical studies for the title molecule-surface interaction system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beck RD, Maroni P, Papageorgopoulos DC, Dang TT, Schmid MP, Rizzo TR. Vibrational mode-specific reaction of methane on a nickel surface. S cience, 2003, 302: 98–100

    CAS  Google Scholar 

  2. Gates GA, Darling GR, Holloway S. A theoretical study of the vibrational excitation of NO/Ag(111). J Chem Phys, 1994, 101: 6281–6288

    Article  CAS  Google Scholar 

  3. Juurlink LBF. Comparative study of C-H stretch and bend vibrations in methane activation on Ni(100) and Ni(111). Phys Rev Lett, 2005, 94: 208303 (1–4)

    Article  Google Scholar 

  4. Juurlink LBF, Killelea DR, Utz AL. State-resolved probes of methane dissociation dynamics. Prog Surf Sci, 2009, 84: 69–134

    Article  CAS  Google Scholar 

  5. Killelea DR, Campbell VL, Shuman NS, Utz AL. Bond-selective control of a heterogeneously catalyzed reaction. S cience, 2008, 319: 790–793

    CAS  Google Scholar 

  6. Kimman J, Rettner C, Auerbach D, Barker J, Tully J. Correlation between kinetic-energy transfer to rotation and to phonons in gas-surface collisions of NO with Ag(111). Phys Rev Lett, 1986, 57: 2053–2056

    Article  CAS  Google Scholar 

  7. Kurten T, Biczysko M, Rajamäki T, Laasonen K, Halonen L. Computational study of the adsorption energetics and vibrational wavenumbers of NH3 adsorbed on the Ni(111) surface. J Phys Chem B, 2005, 109: 8954–8960

    Article  CAS  Google Scholar 

  8. Lee MB, Yang QY, Ceyer ST. Dynamics of the activated dissociative chemisorptions of CH4 and implication for the pressure gap in catalysis: A molecular beam-high resolution electron energy loss study. J Chem Phys, 1987, 87: 2724–2741

    Article  CAS  Google Scholar 

  9. Luntz AC. CH4 dissociation on Ni(100): Comparison of a direct dynamical model to molecular beam experiments. J Chem Phys, 1995, 102: 8264–8269

    Article  CAS  Google Scholar 

  10. Luntz AC. Chemistry. Toward vibrational mode control in catalysis. Science, 2003, 302: 70–71

    Article  CAS  Google Scholar 

  11. Maroni P, Papageorgopoulos DC, Sacchi M, Dang TT, Beck RD, Rizzo TR. State-resolved gas-surface reactivity of methane in the symmetric C-H stretch vibration on Ni(100). Phys Rev Lett, 2005, 94: 246104 (1–4)

    Article  Google Scholar 

  12. Michelsen HA, Rettner CT, Auerbach DJ, Zare RN. Effect of rotation on the translational and vibrational energy dependence of the dissociative adsorption of D2 on Cu(111). J Chem Phys, 1993, 98: 8294–8307

    Article  CAS  Google Scholar 

  13. Rettner CT, Michelsen HA, and Auerbach DJ. Quantum-state-specific dynamics of the issociative adsorption and associative desorption of H2 at a Cu(111) surface. J Chem Phys, 1995, 102: 4625–4641

    Article  CAS  Google Scholar 

  14. Schmid MP, Maroni P, Beck RD, Rizzo TR. Surface reactivity of highly vibrationally excited molecules prepared by pulsed laser excitation: CH4 (2ν3) on Ni(100). J Chem Phys, 2002, 117: 8603–8606

    Article  CAS  Google Scholar 

  15. Smith RR, Killelea DR, DelSesto DF, Utz AL. Preference for vibrational over translational energy in a gas-surface reaction. Science, 2004, 304: 992–995

    Article  CAS  Google Scholar 

  16. Dai J, Light JC. Six dimensional quantum dynamics study for dissociative adsorption of H2 on Cu(111) surface. J Chem Phys, 1997, 107: 1676–1679

    Article  CAS  Google Scholar 

  17. Dai J, Zhang JZH. Quantum adsorption dynamics of a diatomic molecule on surface: Four-dimensional fixed-site model for H2 on Cu(111). J Chem Phys, 1995, 102: 6280–6289

    Article  CAS  Google Scholar 

  18. Dai J, Sheng J, Zhang JZH. Symmetry and rotational orientation effects in dissociative adsorption of diatomic molecules on metals: H2 and HD on Cu(111). J Chem Phys, 1994, 101: 1555–1563

    Article  CAS  Google Scholar 

  19. Grüneich A, Cruz AJ, Jackson B. The dynamics of H2 dissociation on Cu and Ni surfaces. Mixed quantum-classical studies with all degrees of freedom. J Chem Phys, 1993, 98: 5800–5808

    Article  Google Scholar 

  20. Kroes GJ, Wiesenekker G, Baerends EJ, Mowrey RC, Neuhauser D. Dissociative chemisorption of H2 on Cu(100): A four-dimensional study of the effect of parallel translational motion on the reaction dynamics. J Chem Phys, 1996, 105: 5979–5998

    Article  CAS  Google Scholar 

  21. Saalfrank P, Miller WH. Time-independent quantum dynamics for diatom-surface scattering. J Chem Phys, 1993, 98: 9040–9052

    Article  CAS  Google Scholar 

  22. Sheng J, Zhang JZH. Quantum dynamics studies of adsorption and desorption of hydrogen at a Cu(111) surface. J Chem Phys, 1993, 99: 1373–1381

    Article  CAS  Google Scholar 

  23. Vincent JK, Olsen RA, Kroes GJ, Luppi M, Baerends EJ. Sixdimensional quantum dynamics of dissociative chemisorption of H2 on Ru(0001). J Chem Phys, 2005, 122: 44701 (1–8)

    Article  Google Scholar 

  24. Pijper E, Kroes GJ, Olsen RA, Baerends EJ. Reactive and diffractive scattering of H2 from Pt(111) studied using a six-dimensional wave packet method. J Chem Phys, 2002, 117: 5885

    Article  CAS  Google Scholar 

  25. Pijper E, Kroes GJ, Olsen RA, Baerends EJ. Dissociative and diffractive scattering of H2 from Pt(111): A four-dimensional quantum dynamics study. J Chem Phys, 2002, 116: 9435–9448

    Article  CAS  Google Scholar 

  26. Eichler A, Hafner J, Groß A, Scheffler M. Trends in the chemical reactivity of surfaces studied by ab initio quantum-dynamics calculations. Phys Rev B, 1999, 59: 13297–13300

    Article  CAS  Google Scholar 

  27. Krishnamohan GP, Olsen RA, Kroes GJ, Gatti F, Woittequand S. Quantum dynamics of dissociative chemisorption of CH4 on Ni(111): Influence of the bending vibration. J Chem Phys, 2010, 133: 144308 (1–15)

    Article  Google Scholar 

  28. Nave S, Jackson B. Methane dissociation on Ni(111) and Pt(111): Energetic and dynamical studies. J Chem Phys, 2009, 130: 054701 (1–14)

    Article  Google Scholar 

  29. Nave S, Tiwari AK, Jackson B. Methane dissociation and adsorption on Ni(111), Pt(111), Ni(100), Pt(100), and Pt(110)-(1×2): Energetic study. J Chem Phys, 2010, 132: 054705 (1–12)

    Article  Google Scholar 

  30. Jackson B, Nave S. The dissociative chemisorption of methane on Ni(100): Reaction path description of mode-selective chemistry. J Chem Phys, 2011, 135: 114701 (1–12)

    Article  Google Scholar 

  31. Jiang B, Liu R, Li J, Xie D, Yang M, Guo H. Mode selectivity in methane dissociative chemisorption on Ni(111). Chem Sci, 2013, 4: 3249–3254

    Article  CAS  Google Scholar 

  32. Jiang B, Xie D, Guo H. Vibrationally mediated bond selective dissociative chemisorptions of HOD on Cu(111). Chem Sci, 2013, 4: 503–508

    Article  CAS  Google Scholar 

  33. Jiang B, Li J, Xie D, Guo H. Effects of reactant internal excitation and orientation on dissociative chemisorption of H2O on Cu(111): Quasiseven-dimensional quantum dynamics on a refined potential energy surface. J Chem Phys, 2013, 138: 044704 (1–9)

    Google Scholar 

  34. Jiang B, Ren X, Xie D, Guo H. Enhancing dissociative chemisorption of H2O on Cu(111) via vibrational excitation. Proc Natl Acad Sci USA, 2012, 109: 10224–10227

    Article  CAS  Google Scholar 

  35. Bowman JM, Czakó G, Fu B. High-dimensional ab initio potential energy surfaces for reaction dynamics calculations. Phys Chem Phys Chem, 2011, 13: 8094–8111

    Article  CAS  Google Scholar 

  36. Braams BJ, Bowman JM. Permutationally invariant potential energy surfaces in high dimensionality. Int Rev Phys Chem, 2009, 28: 577–606

    Article  CAS  Google Scholar 

  37. Lykke KR, Kay BD. Rotationally inelastic gas-surface scattering: HCl from Au(111). J Chem Phys, 1990, 92: 2614–2623

    Article  CAS  Google Scholar 

  38. Cooper R, Rahinov I, Yuan C, Yang X, Auerbach DJ, Wodtke AM. Efficient translational excitation of a solid metal surface: State-to-state translational energy distributions of vibrational ground state HCl scattering from Au(111). J Vac Sci Technol A, 2009, 27: 907–912

    Article  CAS  Google Scholar 

  39. Rahinov I, Cooper R, Yuan C, Yang X, Auerbach DJ, Wodtke AM. Efficient vibrational and translational excitations of a solid metal surface: State-to-state time-of-flight measurements of HCl(v = 2, J = 1) scattering from Au(111). J Chem Phys, 2008, 129: 214708 (1–16)

    Article  Google Scholar 

  40. Ran Q, Matsiev D, Auerbach DJ, Wodtke AM. Observation of a change of vibrational excitation mechanism with surface temperature: HCl collisions with Au(111). Phys Rev Lett, 2007, 98: 237601 (1–4)

    Google Scholar 

  41. Ran Q, Matsiev D, Auerbach DJ, Wodtke AM. Direct translation-tovibrational energy transfer of HCl on gold: Measurement of absolute vibrational excitation probabilities. Nucl Instrum Meth B, 2007, 258: 1–6

    Article  CAS  Google Scholar 

  42. Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys Rev Lett, 2007, 98: 146401 (1–4)

    Article  Google Scholar 

  43. Blank TB, Brown SD, Calhoun AW, Doren DJ. Neural network models of potential energy surfaces. J Chem Phys, 1995, 103: 4129–4137

    Article  CAS  Google Scholar 

  44. Brown DFR, Gibbs MN, Clary DC. Combining ab initio computations, neural networks, and diffusion Monte Carlo: An efficient method to treat weakly bound molecules. J Chem Phys, 1996, 105: 7597–7604

    Article  CAS  Google Scholar 

  45. Darley MG, Handley CM, Popelier PLA. Beyond point charges: Dynamic polarization from neural net predicted multipole moments. J Chem Theory Comput, 2008, 4: 1435–1448

    Article  CAS  Google Scholar 

  46. Jose KV, Artrith N, Behler J. Construction of high-dimensional neural network potentials using environment-dependent atom pairs. J Chem Phys, 2012, 136: 194111 (1–15)

    Article  Google Scholar 

  47. Le HM, Huynh S, Raff LM. Molecular dissociation of hydrogen peroxide (HOOH) on a neural network ab initio potential surface with a new configuration sampling method involving gradient fitting. J Chem Phys, 2009, 131: 014107 (1–10)

    Google Scholar 

  48. Le HM, Raff LM. Cis→trans, trans→cis isomerizations and N-O bond dissociation of nitrous acid (HONO) on an ab initio potential surface obtained by novelty sampling and feed-forward neural network fitting. J Chem Phys, 2008, 128: 194310 (1–11)

    Article  Google Scholar 

  49. Le HM, Raff LM. Molecular dynamics investigation of the bimolecular reaction BeH + H2 →BeH2 + H on an ab initio potential-energy surface obtained using neural network methods with both potential and gradient accuracy determination. J Phys Chem A, 2009, 114: 45–53

    Article  Google Scholar 

  50. Malshe M, Raff LM, Rockley MG, Hagan M, Agrawal PM, Komanduri R. Theoretical investigation of the dissociation dynamics of vibrationally excited vinyl bromide on an ab initio potential-energy surface obtained using modified novelty sampling and feedforward neural networks. II. Numerical application of the method. J Chem Phys, 2007, 127: 134105 (1–7)

    Article  Google Scholar 

  51. Manzhos S, Wang X, Dawes R, Carrington T. A nested moleculeindependent neural network approach for high-quality potential fits. J Phys Chem A, 2005, 110: 5295–5304

    Article  Google Scholar 

  52. Pukrittayakamee A, Malshe M, Hagan M, Raff LM, Narulkar R, Bukkapatnum S, Komanduri R. Simultaneous fitting of a potentialenergy surface and its corresponding force fields using feedforward neural networks. J Chem Phys, 2009, 130: 134101 (1–10)

    Article  Google Scholar 

  53. Raff LM, Malshe M, Hagan M, Doughan DI, Rockley MG, Komanduri R. Ab initio potential-energy surfaces for complex, multichannel systems using modified novelty sampling and feedforward neural networks. J Chem Phys, 2005, 122: 84104 (1–16)

    Article  Google Scholar 

  54. Behler J, Delley B, Lorenz S, Reuter K, Scheffler M. Dissociation of O2 at Al(111): The role of spin selection rules. Phys Rev Lett, 2005, 94: 036104 (1–4)

    Article  Google Scholar 

  55. Lorenz S, Groß A, Scheffler M. Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks. Chem Phys Lett, 2004, 395: 210–215

    Article  CAS  Google Scholar 

  56. Lorenz S, Scheffler M, Gross A. Descriptions of surface chemical reactions using a neural network representation of the potential-energy surface. Phys Rev B, 2006, 73: 115431 (1–13)

    Article  Google Scholar 

  57. Behler J, Lorenz S, Reuter K. Representing molecule-surface interactions with symmetry-adapted neural networks. J Chem Phys, 2007, 127: 014705 (1–11)

    Article  Google Scholar 

  58. Behler J, Reuter K, Scheffler M. Nonadiabatic effects in the dissociation of oxygen molecules at the Al(111) surface. Phys Rev B, 2008, 77: 115421 (1–16)

    Article  Google Scholar 

  59. Chen J, Xu X, Xu X, Zhang DH. Communication: An accurate global potential energy surface for the OH + CO → H + CO2 reaction using neural networks. J Chem Phys, 2013, 138: 221104 (1–4)

    Google Scholar 

  60. Chen J, Xu X, Xu X, Zhang DH. A global potential energy surface for the H2 + OH ↔ H2O + H reaction using neural networks. J Chem Phys, 2013, 138: 154301 (1–8)

    Google Scholar 

  61. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci, 1996, 6: 15–50

    Article  CAS  Google Scholar 

  62. Kresse G and Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  63. Blöchl PE. Projector augmented-wave method. Phys Rev B, 1994, 50: 17953–17979

    Article  Google Scholar 

  64. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59: 1758–1775

    Article  CAS  Google Scholar 

  65. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  66. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B, 1992, 46: 6671–6687

    Article  CAS  Google Scholar 

  67. Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13: 5188–5192

    Article  Google Scholar 

  68. Haynes WM. CRC Handbook of Chemistry and Physics. 93rd edition (Internet version 2013). Boca Raton, Fl: CRC Press/Taylor and Francis

    Google Scholar 

  69. Henkelman G, Uberuaga BP, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys, 2000, 113: 9901–9904

    Article  CAS  Google Scholar 

  70. Jonsson H, Mills G, Jacobsen KW. Nudged elastic band method f or f inding minimum energy paths of transitions. Classical and Quantum Dynamics in Condensed Phase S imulations. Eds. Berne BJ, Ciccotti G, Coker DF. Singapore: World Scientific, 1998

    Google Scholar 

  71. Hagan MT, Menhaj MB. Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw, 1994, 5: 989–993

    Article  CAS  Google Scholar 

  72. Behler J. Neural network potential-energy surfaces in chemistry: A tool for large-scale simulations. Phys Chem Chem Phys, 2011, 13: 17930–17955

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong H. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., Fu, B. & Zhang, D.H. Six-dimensional potential energy surface of the dissociative chemisorption of HCl on Au(111) using neural networks. Sci. China Chem. 57, 147–155 (2014). https://doi.org/10.1007/s11426-013-5005-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-5005-7

Keywords

Navigation