Skip to main content
Log in

Simulation study on dynamics of A- to B-form transition in aqueous DNA solution: Effect of alkali metal counterions

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

DNA and its conformational transition can be used to design nanometer-scale structures, nano-tweezers and nanomechanical devices. Experiments and molecular simulations have been used to study the concentration effect on the A-DNA→B-DNA conformational transition, but a systematical investigation on counterion effect on the dynamics of this transition has not been reported up to now. In present work, restrained and unrestrained molecular dynamics (MD) simulations have been performed to characterize the stability of DNA conformations and the dynamics of A-DNA→B-DNA transitions in aqueous solutions with different alkali metal counterions. The DNA duplex d(CGCGAATTCGCG)2, coion Cl and counterions Li+, Na+, K+, Rb+ and Cs+ as well as water molecule were considered using the PARM99 force field in the AMBER8 package. It was found that B-form DNA is more stable than A-form DNA in aqueous electrolyte solutions with different alkali metal counterions. Increasing KCl concentration in solution hinders the A-DNA→B-DNA transition and the transition times for different alkali metal counterions conform to neither the simple sequence related to naked ion size nor to hydrated diameter, but an apparently abnormal sequence of K+ < Rb+ < Cs+ < Na+ < Li+. This abnormal sequence can be well understood in terms of an electrostatic model based on the effective cation diameters and the modified mean-spherical approximation (MMSA). The present results provide valuable information for the design of DNA-based nanomaterials and nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kool ET, Morales JC, Guckian KM. Mimicking the structure and function of DNA: Insights into DNA stability and replication. Angew Chem Int Ed, 2000, 39: 990–1009

    Article  CAS  Google Scholar 

  2. Ghosh A, Bansal M. A glossary of DNA structures from A to Z. Acta Crystallogr D Biol Crystallogr, 2003, 59: 620–626

    Article  Google Scholar 

  3. Yan H. Nucleic acid nanotechnology. Science, 2004, 306: 2048–2049

    Article  CAS  Google Scholar 

  4. Mao C, Sun W, Shen Z, Seeman NC. A nanomechanical device based on the B-Z transition of DNA. Nature, 1999, 397: 144–146

    Article  CAS  Google Scholar 

  5. Wang AH-J, Quigley GJ, Kolpak FJ, Crawford JL, Boom JHV, Marel GVD, Rich A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature, 1979, 282: 680–686

    Article  CAS  Google Scholar 

  6. Pastor N, Weinstein H, Jamison E, Brenowitz M. A detailed interpretation of OH radical footprints in a TBP-DNA complex reveals the role of dynamics in the mechanism of sequence-specific binding. J Mol Biol, 2000, 304: 55–68

    Article  CAS  Google Scholar 

  7. Lyubartsev AP, Laaksonen A. Molecular dynamics simulations of DNA in solution with different counter-ions. J Biomol Struct Dyn, 1998, 16: 579–592

    Article  CAS  Google Scholar 

  8. Albiser G, Lamiri A, Premilat S. The A-B transition: Temperature and base composition effects on hydration of DNA. Int J Biol Macromol, 2001, 28: 199–203

    Article  CAS  Google Scholar 

  9. Skakked Z, Guerstein-Guzikevich G, Eisenstein M, Frolow F, Rabinovich D. The conformation of the DNA double helix in the crystal is dependent on its environment. Nature, 1989, 342: 456–460

    Article  Google Scholar 

  10. Vorlickova M, Minyat EE, Kypr J. Cooperative changes in the chiroptical properties of DNA induced by methanol. Biopolymers, 1984, 23: 1–4

    Article  CAS  Google Scholar 

  11. Vorlickova M. Conformational transitions of alternating purine-pyrimidine DNAs in perchlorate ethanol solutions. Biophys J, 1995, 69: 2033–2043

    Article  CAS  Google Scholar 

  12. Zimmermann SB, Pheiffer BH. A direct demonstration that the ethanol-induced transition of DNA is between the A and B forms. An X-ray diffraction study. J Mol Biol, 1979, 135: 1023–1027

    Google Scholar 

  13. Cheng Y, Korolev N, Nordenskiold L. Similarities and differences in interaction of K+ and Na+ with condensed ordered DNA. A molecular dynamics computer simulation study. Nucl Acids Res, 2006, 34: 686–696

    Article  CAS  Google Scholar 

  14. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz JM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc, 1995, 117: 5179–5197

    Article  CAS  Google Scholar 

  15. Wang K, Yu YX, Gao GH. Density functional study on the structures and thermodynamic properties of small ions around polyanionic DNA. Phys Rev E, 2004, 70: 011912

    Article  Google Scholar 

  16. Wang K, Yu YX, Gao GH. Density functional study on the structural and thermodynamic properties of aqueous DNA-electrolyte solution in the framework of cell model. J Chem Phys, 2008, 128: 185101

    Article  Google Scholar 

  17. Cheatham TE, Kollman PA. Observation of the A-DNA to B-DNA transition during unrestrained molecular dynamics in aqueous solution. J Mol Biol, 1996, 259: 434–444

    Article  CAS  Google Scholar 

  18. Cheatham TE, Kollman PA. Insight into the stabilization of A-DNA by specific ion association: Spontaneous B-DNA to A-DNA transitions observed in molecular dynamics simulations of d[ACCCGCGGGT]2 in the presence of hexaamminecobalt(III). Structure, 1997, 5: 1297–1311

    Article  CAS  Google Scholar 

  19. Fujimoto S, Yu YX. Effect of electrolyte concentration on DNA A-B conformational transition: An unrestrained molecular dynamics simulation study. Chin Phys B, 2010, 19: 088701

    Article  Google Scholar 

  20. Mazur AK. Titration in silico of reversible B-A transitions in DNA. J Am Chem Soc, 2003, 125: 7849–7859

    Article  CAS  Google Scholar 

  21. Noy A, Perez A, Laughton CA, Orozco M. Theoretical study of large conformational transitions in DNA: The B-A conformational change in water and ethanol/water. Nucleic Acids Res, 2007, 35: 3330–3338

    Article  CAS  Google Scholar 

  22. Lee OS, Cho VY, Schatz GC. A- to B-form transition in DNA between gold surfaces. J Phys Chem B, 2012, 116: 7000–7005

    Article  CAS  Google Scholar 

  23. Yu YX, Fujimoto S. Molecular dynamics simulation of the A-DNA to B-DNA transition in aqueous RbCl solution. Sci China Chem, 2013, 56: 524–532

    Article  CAS  Google Scholar 

  24. Perez A, Marchan I, Suozil D, Sponer J, Cheatham TE, Laughton CA, Orpzco M. Refinement of the AMBER force field for nucleic acids: Improving the description of a/g conformers. Biophys J, 2007, 92: 3817–3829

    Article  CAS  Google Scholar 

  25. Pichler A, Ruedisser S, Winger RH, Liedl KR, Hallbrucker A, Mayer E. Nonoriented d(CGCGAATTCGCG)2 dodecamer persists in the B-form even at low water activity. J Am Chem Soc, 2000, 122(4): 716–717

    Article  CAS  Google Scholar 

  26. Goddard TD, Huang CC, Ferrin TE. Visualizing density maps with UCSF Chimera. J Struct Biol, 2007, 157: 281–287

    Article  CAS  Google Scholar 

  27. Eisenman G, Horn R. Ionic selectivity revisited: The role of kinetic and equilibrium processes in ion permeation through channels. J Membrane Biol, 1983, 76: 197–225

    Article  CAS  Google Scholar 

  28. Lu JF, Yu YX, Li YG. Modification and application of the mean spherical approximation method. Fluid Phase Equilibria, 1993, 85: 81–100

    Article  CAS  Google Scholar 

  29. Yang XC, Sachs F. Characterization of stretch-activated ion channel in xenopus oocytes. J Physiol, 1990, 431: 103–122

    CAS  Google Scholar 

  30. Cooper KE, Tang JM, Eisenberg RS. A cation channel in frog lens epithelia responsive to pressure and calcium. J Membrane Biol, 1986, 93: 259–269

    Article  CAS  Google Scholar 

  31. Taglietti V, Toselli M. A study of stretch-activated channels in the membrane of frog oocytes: Interactions with Ca2+ ions. J Physiol, 1988, 407: 311–328

    CAS  Google Scholar 

  32. Nishimura Y, Torigoe C, Tsuboi M. Salt induced B-A transition of poly(dG).poly(dG) and the stabilization of A form by its methylation. Nucleic Acids Res, 1986, 14: 2721–2735

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YangXin Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Fujimoto, S. Simulation study on dynamics of A- to B-form transition in aqueous DNA solution: Effect of alkali metal counterions. Sci. China Chem. 56, 1735–1742 (2013). https://doi.org/10.1007/s11426-013-4959-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4959-9

Keywords

Navigation