Skip to main content
Log in

POCl3-mediated H-bonding-directed one-pot synthesis of macrocyclic pentamers, strained hexamers and highly strained heptamers

  • Articles
  • Special Topic The Frontiers of Chemical Biology and Synthesis
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Previously we have shown that POCl3-mediated H-bonding-directed one-pot macrocyclization allows for the highly selective preparation of five-residue macrocycles as the predominant product with low yields of hexamers and an undetectable occurrence of both tetramers and heptamers. Replacing the interiorly arrayed methyl groups with ethyl groups in these 4–7 residue macrocycles alters the relative stability order among them. Specifically, ethoxy-substituted six-residue macrocycle, rather than pentamer, turns out to be computationally the most stable, suggesting that ethoxy-containing hexamer possibly can be formed as the major product under suitable conditions. We have investigated this possibility by varying reaction temperatures and concentrations, invariably affording pentamer as the major macrocycle with strained circular hexamers and highly strained circular heptamers produced in substantial amounts. This discrepancy can be reasonably explained on the basis of bimolecular reactions between two oligomers higher than monomers via kinetic simulations. In this scenario, the acyclic pentamer is kinetically “trapped” to undergo an intramolecular cyclization to yield circular pentamer, rather than to produce acyclic hexamer. As a result, acyclic hexamer precursor is generated largely from sterically demanding bimolecular reactions between a dimer and a tetramer, or between two trimers that are kinetically slower than the pentamer-producing chain-growth reactions. We additionally found that one-pot macrocyclization proceeds to the largest extent at 40 °C, an intriguing finding that highlights the low reactivities of acid chloride and amine groups in these H-bond-enforced acyclic oligomeric intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pedersen CJ. Cyclic polyethers and their complexes with metal salts. J Am Chem Soc, 1967, 89: 7017–7086

    Article  CAS  Google Scholar 

  2. Dietrich B, Lehn JM, Sauvage J-P. Diazapolyoxamacrocycles and macrobicycles. Tetrahedron Lett, 1969, 34: 2885–2889

    Article  Google Scholar 

  3. Kyba EP, Siegel MG, Sousa LR, Sogah GDY, Cram DJ. Chiral, hinged, and functionalized multiheteromacrocycles. J Am Chem Soc, 1973, 95: 2691–2692

    Article  CAS  Google Scholar 

  4. Sanford AR, Yuan L, Feng W, Yamato K, Flowersb RA, Gong B. Cyclic aromatic oligoamides as highly selective receptors for the guanidinium ion. Chem Commun, 2005: 4720–4722

  5. Shirude PS, Gillies ER, Ladame S, Godde F, Shin-Ya K, Huc I, Balasubramanian S. Macrocyclic and helical oligoamides as a new class of g-quadruplex ligands. J Am Chem Soc, 2007, 129: 11890–11891

    Article  CAS  Google Scholar 

  6. Helsel AJ, Brown AL, Yamato K, Feng W, Yuan LH, Clements AJ, Harding SV, Szabo G, Shao ZF, Gong B. Highly conducting transmembrane pores formed by aromatic oligoamide macrocycles. J Am Chem Soc, 2008, 130: 15784–15785

    Article  CAS  Google Scholar 

  7. Zhu YY, Li C, Li GY, Jiang XK, Li ZT. Hydrogen-bonded aryl amide macrocycles: Synthesis, single-crystal structures, and stacking interactions with fullerenes and coronene. J Org Chem, 2008, 73: 1745–1751

    Article  CAS  Google Scholar 

  8. Qin B, Chen XY, Fang X, Shu YY, Yip YK, Yan Y, Pan SY, Ong WQ, Ren CL, Su HB, et al. Crystallographic evidence of an unusual, pentagon-shaped folding pattern in a circular aromatic pentamer. Org Lett, 2008, 10: 5127–5130

    Article  CAS  Google Scholar 

  9. Qin B, Ren CL, Ye RJ, Sun C, Chiad K, Chen XY, Li Z, Xue F, Su HB, Chass GA, et al. Persistently folded circular aromatic amide pentamers containing modularly tunable cation-binding cavities with high ion selectivity. J Am Chem Soc, 2010, 132: 9564–9566

    Article  CAS  Google Scholar 

  10. Qin B, Ong WQ, Ye RJ, Du ZY, Chen XY, Yan Y, Zhang K, Su HB, Zeng HQ. Highly selective one-pot synthesis of H-bonded pentagon-shaped circular aromatic pentamers. Chem Commun, 2011, 47: 5419–5421

    Article  CAS  Google Scholar 

  11. Knops P, Sendhoff N, Mekelburger HB, Voegtle F. High dilution reactions — New synthetic applications. Top Curr Chem, 1992, 161: 1–36

    CAS  Google Scholar 

  12. Faust R. Explosions as a synthetic tool? Cycloalkynes as precursors to fullererenes, buckytubes and buckyonions. Angew Chem Int Ed, 1998, 37: 2825–2828

    Article  CAS  Google Scholar 

  13. Höger S. Shape-persistent macrocycles: From molecules to materials. Chem Eur J, 2004, 10: 1320–1329

    Article  Google Scholar 

  14. Zhang W, Moore JS. Shape-persistent macrocycles: Structures and synthetic approaches from arylene and ethynylene building blocks. Angew Chem Int Ed, 2006, 45: 4416–4439

    Article  CAS  Google Scholar 

  15. Woodward RB, Au-Yeung BW, Balaram P, Browne LJ, Ward DE, Au-Yeung BW, Balaram P, Browne LJ, Card PJ, Chen CH. Asymmetric total synthesis of erythromycin. 2. Synthesis of an erythronolide A lactone system. J Am Chem Soc, 1981, 103: 3213–3215

    Article  CAS  Google Scholar 

  16. Eschenmoser A. Vitamin B12: Experiments concerning the origin of its molecular structure. Angew Chem Int Ed, 1988, 27: 5–39

    Article  Google Scholar 

  17. Xing LY, Ziener U, Sutherland TC, Cuccia LA. Hydrogen bond directed synthesis of pyridazine and naphthyridine containing macrocycles. Chem Commun, 2005: 5751–5753

  18. Imabeppu F, Katagiri K, Masu H, Kato T, Tominaga M, Therrien B, Takayanagi H, Kaji E, Yamaguchi K, Kagechika H, et al. Calix[3]amides-bowlshaped cyclic trimers toward building block for molecular recognition: Self-complementary dimeric structure in the crystal. Tetrahedron Lett, 2006, 47: 413–416

    Article  CAS  Google Scholar 

  19. Campbell F, Plante J, Carruthers C, Hardie MJ, Prior TJ, Wilson AJ. Macrocyclic scaffolds derived from p-aminobenzoic acid. Chem Commun, 2007: 2240–2242

  20. Yokoyama A, Maruyama T, Tagami K, Masu H, Katagiri K, Azumaya I, Yokozawa T. One-pot synthesis of cyclic triamides with a triangular cavity from trans-stilbene and diphenylacetylene monomers. Org Lett, 2008, 10: 3207–3210

    Article  CAS  Google Scholar 

  21. Katagiri K, Tohaya T, Masu H, Tominaga M, Azumaya I. Effect of aromatic-aromatic interactions on the conformational stabilities of macrocycle and preorganized structure during macrocyclization. J Org Chem, 2009, 74: 2804–2810

    Article  CAS  Google Scholar 

  22. Campbell F, Wilson AJ. An ‘impossible’ macrocyclisation using conformation directing protecting groups. Tetrahedron Lett, 2009, 50: 2236–2238

    Article  CAS  Google Scholar 

  23. He L, An Y, Yuan L, Yamato K, Feng W, Gerlitz O, Zheng C, Gong B. Macrocyclic aromatic tetrasulfonamides with a stable cone conformation. Chem Commun, 2005: 3788–3790

  24. He L, An Y, Yuan LH, Feng W, Li MF, Zhang DC, Yamato K, Zheng C, Zeng XC, Gong B. Shape-persistent macrocyclic aromatic tetrasulfonamides: Molecules with nanosized cavities and their nanotubular assemblies in solid state. Proc Natl Acad Sci USA, 2006, 103: 10850–10855

    Article  CAS  Google Scholar 

  25. Geng M, Zhang D, Wu X, He L, Gong B. One-pot formation and characterization of macrocyclic aromatic tetrasulfonates. Org Lett, 2009, 11: 923–926

    Article  CAS  Google Scholar 

  26. Carver FJ, Hunter CA, Shannon RJ. Directed macrocyclization reactions. Chem Commun, 1994: 1277–1280

  27. Yuan L, Feng W, Yamato K, Sanford AR, Xu D, Guo H, Gong B. Highly efficient, one-step macrocyclizations assisted by the folding and preorganization of precursor oligomers. J Am Chem Soc, 2004, 126:11120–11121

    Article  CAS  Google Scholar 

  28. Zhang AM, Han YH, Yamato K, Zeng XC, Gong B. Aromatic oligoureas: Enforced folding and assisted cyclization. Org Lett, 2006, 8: 803–806

    Article  CAS  Google Scholar 

  29. Ahn HC, Yun SM, Choi K. A proline-based macrocyclic amide with S-4 symmetry. Chem Lett, 2008, 37: 10–11

    Article  CAS  Google Scholar 

  30. Feng W, Yamato K, Yang LQ, Ferguson JS, Zhong LJ, Zou SL, Yuan LH, Zeng XC, Gong B. Efficient kinetic macrocyclization. J Am Chem Soc, 2009, 131: 2629–2637

    Article  CAS  Google Scholar 

  31. Jiang H, Leger JM, Guionneau P, Huc I. Strained aromatic oligoamide macrocycles as new molecular clips. Org Lett, 2004, 6: 2985–2988

    Article  CAS  Google Scholar 

  32. Hui JKH, MacLachlan MJ. [6+6] Schiff-base macrocycles with 12 imines: Giant analogues of cyclohexane. Chem Commun, 2006: 2480–2482

  33. Ferguson JS, Yamato K, Liu R, He L, Zeng XC, Gong B. One-pot formation of large macrocycles with modifiable peripheries and internal cavities. Angew Chem Int Ed, 2009, 48: 3150–3154

    Article  CAS  Google Scholar 

  34. Filarowski A, Koll A, Sobczyk L. Intramolecular hydrogen bonding in o-hydroxy Aryl Schiff Bases. Curr Org Chem, 2009, 13: 172–193

    Article  CAS  Google Scholar 

  35. Li F, Gan Q, Xue L, Wang ZM, Jiang H. H-bonding directed one-step synthesis of novel macrocyclic peptides from ɛ-aminoquinolinecarboxylic acid. Tetrahedron Lett, 2009, 50: 2367–2369

    Article  CAS  Google Scholar 

  36. Yang LQ, Zhong LJ, Yamato K, Zhang XH, Feng W, Deng PC, Yuan LH, Zeng XC, Gong B. Aromatic oligoamide macrocycles from the bimolecular coupling of folded oligomeric precursors. New J Chem, 2009, 33: 729–733

    Article  CAS  Google Scholar 

  37. Zoua S, Hea Y, Yanga Y, Zhaoa Y, Yuana L, Feng W, Yamato K, Gong B. Improving the efficiency of forming ‘unfavorable’ products: eight-residue macrocycles from folded aromatic oligoamide precursors. Synlett. 2009, 9

  38. Hu JC, Feng W, Li XH, Yang LQ, Yuan LH, He L, Gong B. One-pot formation of aromatic oligoamide macrocycles and the corresponding mechanism. Acta Phys Chim Sin, 2010, 26: 1811–1822

    CAS  Google Scholar 

  39. Yang YA, Yuan LH, Hu JC, Zou SL, Feng W, Gong B. Spherical assemblies of cyclo[6]aramide with polar side chains. Acta Phys Chim Sin, 2010, 26: 1557–1564

    Google Scholar 

  40. Qin B, Sun C, Liu Y, Shen J, Ye RJ, Zhu J, Duan XF, Zeng HQ. One-pot synthesis of hybrid macrocyclic pentamers with variable functionalizations around the periphery. Org Lett, 2011, 13: 2270–2273

    Article  CAS  Google Scholar 

  41. Qin B, Shen S, Sun C, Du ZY, Zhang K, Zeng HQ. One-pot multi-molecular macrocyclization for the expedient synthesis of macrocyclic aromatic pentamers by a chain growth mechanism. Chem Asian J, 2011: asia.201100409

  42. For some recent reviews in foldamers, see: (a) Gellman SH. Foldamers: A manifesto. Acc Chem Res, 1998, 31: 173–180

    Article  CAS  Google Scholar 

  43. Gong B. Crescent oligoamides: From acyclic “macrocycles” to folding nanotubes. Chem Eur J, 2001, 7: 4336–4342

    Article  CAS  Google Scholar 

  44. Hill DJ, Mio MJ, Prince RB, Hughes TS, Moore JS. A field guide to foldamers. Chem Rev, 2001, 101: 3893–4011

    Article  CAS  Google Scholar 

  45. Sanford AR, Gong B. Evolution of helical foldamers. Curr Org Chem, 2003, 7: 1649–1659

    Article  CAS  Google Scholar 

  46. Sanford AR, Yamato K, Yang X, Yuan L, Han Y, Gong B. Well-defined secondary structures — Information-storing molecular duplexes and helical foldamers based on unnatural peptide backbones. Eur J Biochem, 2004, 271: 1416–1425

    Article  CAS  Google Scholar 

  47. Huc I. Aromatic oligoamide foldamers. Eur J Org Chem, 2004: 17–29

  48. Cheng RP. Beyond de novo protein design-de novo design of non-natural folded oligomers. Curr Opin Struc Biol, 2004, 14: 512–520

    Article  CAS  Google Scholar 

  49. Li ZT, Hou JL, Li C, Yi HP. Shape-persistent aromatic amide oligomers: New tools for supramolecular chemistry. Chem Asian J, 2006, 1: 766–778

    Article  CAS  Google Scholar 

  50. Gong B. Hollow crescents, helices, and macrocycles from enforced folding and folding-assisted macrocyclization. Acc Chem Res, 2008, 41: 1376–1386

    Article  CAS  Google Scholar 

  51. Li ZT, Hou JL, Li C. Peptide mimics by linear arylamides: A structural and functional diversity test. Acc Chem Res, 2008, 41: 1343–1353

    Article  CAS  Google Scholar 

  52. Horne WS, Gellman SH. Foldamers with heterogeneous backbones. Acc Chem Res, 2008, 41: 1399–1408

    Article  CAS  Google Scholar 

  53. Haldar D, Schmuck C. Metal-free double helices from abiotic backbones. Chem Soc Rev, 2009, 38: 363–371

    Article  CAS  Google Scholar 

  54. Hamuro Y, Geib SJ, Hamilton AD. Novel molecular scaffolds: Formation of helical secondary structure in a family of oligoanthranilamides. Angew Chem Int Ed, 1994, 33: 446–448

    Article  Google Scholar 

  55. Hamuro Y, Geib SJ, Hamilton AD. Oligoanthranilamides. non-peptide subunits that show formation of specific secondary structure. J Am Chem Soc, 1996, 118: 7529–7541

    Article  CAS  Google Scholar 

  56. Hamuro Y, Geib SJ, Hamilton AD. Novel folding patterns in a family of oligoanthranilamides: Non-peptide oligomers that form extended helical secondary structures. J Am Chem Soc, 1997, 119: 10587–10593

    Article  CAS  Google Scholar 

  57. Berl V, Huc I, Khoury RG, Krische MJ, Lehn JM. Interconversion of single and double helices formed from synthetic molecular strands. Nature, 2000, 407: 720–723

    Article  CAS  Google Scholar 

  58. Berl V, Huc I, Khoury R, Lehn JM. Helical molecular programming: supramolecular double helices by dimerization of helical oligopyridine-dicarboxamide strands. Chem Eur J, 2001, 7: 2810–2820

    Article  CAS  Google Scholar 

  59. Kolomiets E, Berl V, Odriozola I, Stadler AM, Kyritsakas N, Lehn JM. Contraction/extension molecular motion by protonation/deprotonation induced structural switching of pyridine derived oligoamides. Chem Commun, 2003: 2868–2869

  60. Zhu J, Parra RD, Zeng HQ, Skrzypczak-Jankun E, Zeng XC, Gong B. A new class of folding oligomers: Crescent oligoamides. J Am Chem Soc, 2000, 122: 4219–4220

    Article  CAS  Google Scholar 

  61. Gong B, Zeng HQ, Zhu J, Yuan LH, Han YH, Cheng SZ, Furukawa M, Parra RD, Kovalevsky AY, Mills JL, et al. Creating nanocavities of tunable sizes: Hollow helices. Proc Natl Acad Sci USA, 2002, 99: 11583–11588

    Article  CAS  Google Scholar 

  62. Yuan LH, Zeng HQ, Yamato K, Sanford AR, Feng W, Atreya HS, Sukumaran DK, Szyperski T, Gong B. Helical aromatic oligoamides: Reliable, readily predictable folding from the combination of rigidified structural motifs. J Am Chem Soc, 2004, 126: 16528–16537

    Article  CAS  Google Scholar 

  63. Yang XW, Yuan LH, Yamamoto K, Brown AL, Feng W, Furukawa M, Zeng XC, Gong B. Backbone-rigidified oligo(m-phenylene ethynylenes). J Am Chem Soc, 2004, 126: 3148–3162

    Article  CAS  Google Scholar 

  64. Corbin PS, Zimmerman SC, Thiessen PA, Hawryluk NA, Murray TJ. Complexation-induced unfolding of heterocyclic ureas. Simple foldamers equilibrate with multiply hydrogen-bonded sheetlike structures. J Am Chem Soc, 2001, 123: 10475–10488

    Article  CAS  Google Scholar 

  65. Jiang H, Leger J-M, Huc I. Aromatic δ-peptides. J Am Chem Soc, 2003, 125: 3448–3449

    Article  CAS  Google Scholar 

  66. Dolain C, Leger JM, Delsuc N, Gornitzka H, Huc I. Probing helix propensity of monomers within a helical oligomer. Proc Natl Acad Sci USA, 2005, 102: 16146–16151

    Article  CAS  Google Scholar 

  67. Haldar D, Jiang H, Leger JM, Huc I. Interstrand interactions between side chains in a double-helical foldamer. Angew Chem Int Ed, 2006, 45: 5483–5486

    Article  CAS  Google Scholar 

  68. Gan Q, Bao CY, Kauffmann B, Grelard A, Xiang JF, Liu SH, Huc I, Jiang H. Quadruple and double helices of 8-fluoroquinoline oligoamides. Angew Chem Int Ed, 2008, 47: 1715–1718

    Article  CAS  Google Scholar 

  69. Hou JL, Shao XB, Chen GJ, Zhou YX, Jiang XK, Li ZT. Hydrogen bonded oligohydrazide foldamers and their recognition for saccharides. J Am Chem Soc, 2004, 126: 12386–12394

    Article  CAS  Google Scholar 

  70. Li C, Ren SF, Hou JL, Yi HP, Zhu SZ, Jiang XK, Li ZT. F…H-N Hydrogen bonding driven foldamers: Efficient receptors for dialkylammonium Ions. Angew Chem Int Ed, 2005, 44: 5725–5729

    Article  CAS  Google Scholar 

  71. Hou JL, Yi HP, Sha XB, Li C, Wu ZQ, Jian XK, Wu LZ, Tung CH, Li ZT. Helicity induction in hydrogen-bonding-driven zinc porphyrin foldamers by chiral C60-incorporating histidines. Angew Chem Int Ed, 2006, 45: 796–800

    Article  CAS  Google Scholar 

  72. Cai W, Wang GT, Xu YX, Jiang XK, Li ZT. Vesicles and organogels from foldamers: A solvent-modulated self-assembling process. J Am Chem Soc, 2008, 130: 6936–6937

    Article  CAS  Google Scholar 

  73. Rebek J. Molecular behavior in small spaces. Acc Chem Res, 2009, 42: 1660–1668

    Article  CAS  Google Scholar 

  74. Kanamori D, Okamura TA, Yamamoto H, Ueyama N. Linear-to-turn conformational switching induced by deprotonation of unsymmetrically linked phenolic oligoamides. Angew Chem Int Ed, 2005, 44: 969–972

    Article  CAS  Google Scholar 

  75. Li X, Zhan CL, Wang YB, Yao JN. Pyridine-imide oligomers. Chem Commun, 2008: 2444–2446

  76. Yan Y, Qin B, Shu YY, Chen XY, Yip YK, Zhang DW, Su HB, Zeng HQ. Helical organization in foldable aromatic oligoamides by a continuous hydrogen-bonding network. Org Lett, 2009, 11: 1201–1204

    Article  CAS  Google Scholar 

  77. Yan Y, Qin B, Ren CL, Chen XY, Yip YK, Ye RJ, Zhang DW, Su HB, Zeng HQ. Synthesis, structural investigations, hydrogen-deuterium exchange studies, and molecular modeling of conformationally stablilized aromatic oligoamides. J Am Chem Soc, 2010, 132: 5869–5879

    Article  CAS  Google Scholar 

  78. Ong WQ, Zhao HQ, Du ZY, Yeh JZY, Ren CL, Tan LZW, Zhang K, Zeng HQ. Computational prediction and experimental verification of pyridine-based helical oligoamides containing four repeating units per turn. Chem Commun, 2011, 47: 6416–6418

    Article  CAS  Google Scholar 

  79. Ong WQ, Zhao HQ, Fang X, Woen S, Zhou F, Yap WL, Su HB, Li SFY, Zeng HQ. Encapsulation of conventional and unconventional water dimers by water-ninding foldamers. Org Lett, 2011, 13: 3194–3197

    Article  CAS  Google Scholar 

  80. Ren CL, Xu SY, Xu J, Chen HY, Zeng HQ. Planar macrocyclic fluoropentamers as supramolecular organogelators. Org Lett, 2011: 3840–3843

  81. Ren CL, Maurizot V, Zhao HQ, Shen J, Zhou F, Ong WQ, Du ZY, Zhang K, Su HB, Zeng HQ. Fivefold-symmetric macrocyclic aromatic pentamers: High affinity cation recognition, ion-pair induced columnar stacking and nanofibrillation. J Am Chem Soc, 2011, 133: 13930–13933

    Article  CAS  Google Scholar 

  82. Ren CL, Zhou F, Qin B, Ye RJ, Shen S, Su HB, Zeng HQ. Crystallographic realization of the mathematically predicted densest “All Pentamer” packing lattice by C5-symmetric “sticky” fluoropentamers. Angew Chem Int Ed, 2011: DOI: 10.1002/anie.201101553

  83. Zhang Z, Xia B, Han C, Yu Y, Huang F. Syntheses of copillar[5]arenes by co-oligomerization of different monomers. Org Lett, 2010, 12: 3285–3287

    Article  CAS  Google Scholar 

  84. Zhang Z, Luo Y, Xia B, Han C, Yu Y, Chen X, Huang F. Four constitutional isomers of BMpillar[5]arene: Synthesis, crystal structures and complexation with n-octyltrimethyl ammonium hexafluorophosphatew. Chem Commun, 2011, 47: 2417–2419

    Article  CAS  Google Scholar 

  85. Guieu S, Crane AK, MacLachlan MJ. Campestarenes: Novel shape-persistent Schiff base macrocycles with 5-fold symmetry. Chem Commun, 2011, 47: 1169–1171

    Article  CAS  Google Scholar 

  86. Du ZY, Ren CL, Ye RJ, Shen J, Lu YJ, Wang J, Zeng HQ. BOP-mediated one-pot synthesis of C5-symmetric macrocyclic pyridone pentamers. Chem Commun, 2011, 47: 12488–12490

    Article  CAS  Google Scholar 

  87. Frisch MJ: In Gaussian 03, Gaussian, Inc. Edited by: Wallingford CT; 2004

  88. Becke AD. Density functional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98: 5648–5652

    Article  CAS  Google Scholar 

  89. Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J. A complete basis set model chemistry. I. The total energies of closed shell atoms and hydrides of the first row elements. J Chem Phys, 1988, 89: 2193–2218

    Article  CAS  Google Scholar 

  90. Petersson GA, Al-Laham MA. A complete basis set model chemistry. II. Open shell systems and the total energies of the first row atoms. J Chem Phys, 1991, 94: 6081–6090

    Article  CAS  Google Scholar 

  91. Carried out by using mechanism-based kinetics simulator avaiable from http://www.stolaf.edu/depts/chemistry/courses/toolkits/126/js/kinetics/index.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuaQiang Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Qin, B. & Zeng, H. POCl3-mediated H-bonding-directed one-pot synthesis of macrocyclic pentamers, strained hexamers and highly strained heptamers. Sci. China Chem. 55, 55–63 (2012). https://doi.org/10.1007/s11426-011-4438-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4438-0

Keywords

Navigation