Skip to main content
Log in

FEARCF a multidimensional free energy method for investigating conformational landscapes and chemical reaction mechanisms

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The development and implementation of a computational method able to produce free energies in multiple dimensions, descriptively named the free energies from adaptive reaction coordinate forces (FEARCF) method is described in this paper. While the method can be used to calculate free energies of association, conformation and reactivity here it is shown in the context of chemical reaction landscapes. A reaction free energy surface for the Claisen rearrangement of chorismate to prephenate is used as an illustration of the method’s efficient convergence. FEARCF simulations are shown to achieve flat histograms for complex multidimensional free energy volumes. The sampling efficiency by which it produces multidimensional free energies is demonstrated on the complex puckering of a pyranose ring, that is described by a three dimensional W(θ 1, θ 2, θ 3) potential of mean force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zewail AH. Femtochemistry: Atomic-scale dynamics of the chemical bond Zewail A H. 2000, J Phys Chem A, 2000, 104: 5660–5694

    Article  CAS  Google Scholar 

  2. Schramm VL. Enzymatic transition states and transition state analog design. Ann Rev Biochem, 1998, 67: 693–720

    Article  CAS  Google Scholar 

  3. Bash PA, Ho LL, MacKerell ADJ, Levine D, Hallstrom P. Progress toward chemical accuracy in the computer simulation of condensed phase reactions. Proc Natl Acad Sci USA, 1996, 93: 3698–3703

    Article  CAS  Google Scholar 

  4. Beveridge DL. Free-energy via molecular simulation-applications to chemical and biomolecular systems. Ann Rev Biophys Biophys Chem, 1989, 18: 431–492

    Article  CAS  Google Scholar 

  5. Crim, Chemical reaction dynamics. Proc Natl Acad Sci USA, 2008, 105(35): 12647–12648

  6. Mezei M. Adaptive umbrella sampling: self-consistent determination of the non-boltzmann bias. J Comput Phys, 1987, 68: 237–248

    Article  Google Scholar 

  7. Torrie GM, Valleau JP. Monte-Carlo free energy estimates using non-Boltzmann sampling. Application to the subcritical Lennard-Jones fluid. Chem Phys Lett, 1974, 28(4): 578–581

    CAS  Google Scholar 

  8. Torrie GM, Valleau JP. Nonphysical sampling distributions in monte carlo free-energy estimation: umbrella sampling. J Comp Phys, 1977, 23: 187–199

    Article  Google Scholar 

  9. Darve E, Pohorille A. Calculating free energies using average force. J Chem Phys, 2001, 115(20): 9169–9183

    Article  CAS  Google Scholar 

  10. Darve E, Rodríguez-Gómez D, Pohorille A. Adaptive biasing force method for scalar and vector free energy calculations. J Chem Phys, 2008, 128: 144120 (1–13)

    Article  Google Scholar 

  11. Naidoo KJ, Brady JW. Calculation of the ramachandran potential of mean force for a disaccharide in aqueous solution. J Am Chem Soc, 1999, 121(10): 2244–2252

    Article  CAS  Google Scholar 

  12. Ferrenberg AM, Swendsen RH. New monte carlo technique for studying phase transitions. Phys Rev Lett, 1988, 61(23): 2635–2638

    Article  CAS  Google Scholar 

  13. Kuttel MM, Brady JW, Naidoo KJ. Carbohydrate solution simulations: Producing a force field with experimentally consistent primary alcohol rotational frequencies and populations. J Comp Chem, 2002, 23(13): 1236–1243

    Article  CAS  Google Scholar 

  14. Kuttel MM, Naidoo KJ. Free energy surfaces for the alpha(1–4)-glycosidic linkage: Implications for polysaccharide solution structure and dynamics. J Phys Chem B, 2005, 109: 7468–7474

    Article  CAS  Google Scholar 

  15. Rajamani R., Naidoo KJ, Gao J. Implementation of an adaptive umbrella sampling method for the calculation of multidimensional potential of mean force of chemical reactions in solution. J Comp Chem, 2003, 24: 1775–1781

    Article  CAS  Google Scholar 

  16. Barnett CB, Naidoo KJ. Free Energies from Adaptive Reaction Coordinate Forces (FEARCF): An application to ring puckering Mol Phys, 2009, 107(8–12): 1243–1250

    Article  CAS  Google Scholar 

  17. Strümpfer J, Naidoo KJ. Computing free energy hypersurfaces for anisotropic intermolecular associations. J Comp Chem, 2010, 31(2): 308–316

    Google Scholar 

  18. Wang FG, Landau DP. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys Rev Lett, 2001, 86(10): 2050–2053

    Article  CAS  Google Scholar 

  19. Wang FG, Landau DP. Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram. Phys Rev E, 2001, 64(5)

  20. Laio A, Parrinello M. Escaping free-energy minima. Proc Natl Acad Sci, 2002, 99(20): 12562–12566

    Article  CAS  Google Scholar 

  21. Berkowitz M, Karim OA, McCammon JA, Rossky PJ. Sodium chloride ion pair interaction in water:computer simulation. Chem Phys Lett, 1984, 105(6): 577–580

    Article  CAS  Google Scholar 

  22. Belch AC, Berkowitz M, McCammon JA. Solvation structure of a sodium chloride ion pair in water. J Am Chem Soc, 1986, 108: 1755–1761

    Article  CAS  Google Scholar 

  23. Trzesniak D, Kunz APE, van Gunsteren WF. A comparison of methods to compute the potential of mean force. Chemphyschem, 2007, 8(1): 162–169

    Article  CAS  Google Scholar 

  24. Khavrutskii IV, Dzubiella J, McCammon JA. Computing accurate potentials of mean force in electrolyte solutions with the generalized gradient-augmented harmonic Fourier beads method. J Chem Phys, 2008, 128(4): 044106–044113

    Article  Google Scholar 

  25. Bartels C, Karplus M. Multidimensional adaptive umbrella sampling: applications to main chain and side chain peptide conformation. J Comp Chem, 1997, 18(12): 1450–1462

    Article  CAS  Google Scholar 

  26. Bartels C, Karplus M. Probability distributions for complex systems: Adaptive umbrella sampling of the potential energy. J Phys Chem B, 1998, 102: 865–880

    Article  CAS  Google Scholar 

  27. Bouzida D, Kumar S, Swendsen RH. Efficient Monte Carlo methods for the computer simulation of biological molecules. Phys Rev A, 1992, 45(12): 8894

    Article  CAS  Google Scholar 

  28. Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM. The Weighted Histogram analysis method for free-energy calculations on biomolecules. I. The Method. J Comput Chem, 1992, 13: 1011–1021

    CAS  Google Scholar 

  29. Kumar S, Payne PW, Vasquez M. Method for free-energy calculations using iterative techniques. J Comput Chem, 1996, 17(10): 1269–1275

    Article  CAS  Google Scholar 

  30. Ferrenberg AM, Swendsen RH. Optimized monte carlo data analysis. Phys Rev Lett, 1989, 63(12): 1195–1198

    Article  CAS  Google Scholar 

  31. Bartels C, Schaefer M, Karplus M. Determination of equilibrium properties of biomolecular systems using multidimentional adaptive umbrella sampling. J Chem Phys, 1999, 111(178): 8048–8067

    Article  CAS  Google Scholar 

  32. Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA. Multidimensional free-energy calculations using the weighted histo-gram analysis method. J Comput Chem, 1995, 16(11): 1339–1350

    Article  CAS  Google Scholar 

  33. Ghosh I, McCammon JA. Sidechain rotational isomerization in proteins: dynamic simulation with solvent surroundings. Biophys J, 1987, 51: 637–641

    Article  CAS  Google Scholar 

  34. Ma SK. MD simulations and Poincare recurrence time. J Stat Phys, 1981, 26: 221

    Article  Google Scholar 

  35. Brooks BR, Brooks CL, Mackerell Jr. AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M. CHARMM: The biomolecular simulation program. J Comp Chem, 2009, 30(10): 1545–1614

    Article  CAS  Google Scholar 

  36. Brooks BR, Hodoscek M. Parallelization of CHARMM for MIMD machines. Chemical Design Automation News, 1992, 7: 16

    Google Scholar 

  37. Warshel A, Levitt M. Theoretical studies of enzymic reactions-dielectric, electrostatic and steric stabilization of carbonium-ion in reaction of lysozyme. J Mol Biol, 1976, 103: 227

    Article  CAS  Google Scholar 

  38. Bash P, Fields M, Karplus M. Free energy pertubation method for chemical reactions in the condensed phase: A dynamical approach based on the combined quantum and molecular mechanical potential. J Am Chem Soc, 1987, 109(26): 8092–8094

    Article  CAS  Google Scholar 

  39. Field MJ, Bash PA, Karplus M. A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J Comput Chem, 1990, 11(6): 700–733

    Article  CAS  Google Scholar 

  40. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc, 1985, 107: 3902–3909

    CAS  Google Scholar 

  41. Yonemoto EH, Riley RL, Kim Y II, Atherton SJ, Schmehl RH, Mallouk TE. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. [Erratum to document cited in CA103(2):11627f]. J Am Chem Soc, 1993, 115(12): 5348

    Article  Google Scholar 

  42. Stewart JJP. Optimization of parameters for semiempirical methods. I. Method. J Comput Chem, 1989, 10(2): 209–220

    Article  CAS  Google Scholar 

  43. McNamara JP, Muslim AM, Abdel-Aal H, Wang H, Mohr M, Hillier IH, Bryce RA. Towards a quantum mechanical force field for carbohydrates: A reparametrized semi-empirical MO approach. Chem Phys Lett, 2004, 394: 429–436

    Article  CAS  Google Scholar 

  44. Barnett CB, Naidoo KJ. Stereoelectronic and solvation effects deter-mine hydroxymethyl conformational preferences in monosaccharides. J Phys Chem B, 2008, 112: 15450–15459

    Article  CAS  Google Scholar 

  45. Cui Q, Elstner M, Kaxiras E, Frauenheim T, Karplus M. A QM/MM implementation of the self-consistent charge density functional tight binding (SCC-DFTB) method. J Phys Chem B, 2001, 105: 569–585

    Article  CAS  Google Scholar 

  46. Fernandes K, Naidoo KJ. Complete catalytic and non-catalytic reaction surface of the chorismate to prephenate isomerisation. Unpublished, 2011

  47. Roux B. The calculation of the potential of mean force using computer simulations. Comput Phys Comm, 1995, 91(1–3): 275–282

    Article  CAS  Google Scholar 

  48. Press W, Teukolsky SA, Vetterling W, Flannery B. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. New York: Cambridge University Press, 1992

    Google Scholar 

  49. Nam KH, Gao JL, York DM. Quantum mechanical/molecular mechanical simulation study of the mechanism of hairpin ribozyme catalysis. J Am Chem Soc, 2008, 130(14): 4680–4691

    Article  CAS  Google Scholar 

  50. Ruiz-Pernia JJ, Garcia-Viloca M, Bhattacharyya S, Gao J, Truhlar DG. Critical role of substrate conformational change in the proton transfer process catalyzed by 4-oxalocrotonate tautomerase. J Am Chem Soc, 2009, 131(7): 2687–2698

    Article  CAS  Google Scholar 

  51. Ma S, Devi-Kesavan LS, Gao J. Molecular dynamics simulations of the catalytic pathway of a cysteine protease: A combined QM/MM study of human cathepsin K. J Am Chem Soc, 2007, 129(44): 13633–13645

    Article  CAS  Google Scholar 

  52. Davies GJ, Ducros VMA, Varrot A, Zechel DL. Mapping the conformational itinerary of beta-glycosidases by X-ray crystallography. Biochemical Society Transactions, 2003, 31: 523–527

    Article  CAS  Google Scholar 

  53. Berces A, Enright G, Nukada T, Whitfield DM. The conformational origin of the barrier to the formation of neighboring group assistance in glycosylation reactions: A dynamical density functional theory study. J Am Chem Soc, 2001, 123: 5460–5464

    Article  CAS  Google Scholar 

  54. Cremer D, Pople JA. A general definition of Ring Puckering Coordinates. J Am Chem Soc, 1975, 96(6): 1354–1358

    Article  Google Scholar 

  55. Hill AD, Reilly PJ. Puckering coordinates of monocyclic rings by triangular decomposition. J Chem Inf Model, 2007, 47(3): 1031–1035

    Article  CAS  Google Scholar 

  56. Barnett CB, Naidoo KJ. Presented at the Theory and Applications of Computational Chemistry 2008, Shanghai, China

  57. Barnett CB, Naidoo KJ. Ring puckering: A metric for evaluating the accuracy of AM1, PM3, PM3CARB-1 and SCC-DFTB carbohydrate QM/MM simulations. J Phys Chem B, 2010, 114: 17142–17154

    Article  CAS  Google Scholar 

  58. Yang Y, Yu H, York D, Cui Q, Elstner M. Extension of the self-consistent-charge density-functional tight-binding method: third-order expansion of the density functional theory total energy and introduction of a modified effective coulomb interaction. J Phys Chem A, 2007, 111: 10861–10873

    Article  CAS  Google Scholar 

  59. Shallenberger RS. The conformational structure of the sugars in Advanced sugar chemistry. 1982

  60. Barnett CB, Wilkinson KA, Naidoo KJ. Pyranose ring transition state is derived from cellobiohydrolase I induced conformational stability and glycosidic bond polarization. J Am Chem Soc, 2010, 132(37): 12800–12803

    Article  CAS  Google Scholar 

  61. Barnett CB, Wilkinson KA, Naidoo KJ. Molecular details from computational reaction dynamics for the Cellobidrydrolase I glycosylation reaction. J Am Chem Soc, 2011, doi: 10.1021/ja206842j

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Naidoo.

Additional information

NAIDOO Kevin J. holds a PhD from the University of Michigan (USA) and following this he was a Postdoctoral Fellow (1994–1995) at Cornell University (USA). He is Professor in Physical Chemistry at the University of Cape Town (UCT). Since 2007 he has held the South African Research Chair in Scientific Computing. He is the recipient of national honours, such as the title of Extraordinary Professor in the faculty of Natural Sciences given to him by University of the Western Cape (2010). Internationally he has served as member of the editorial board of the Journal of Computational Chemistry since 2004. In 2009 he established the Scientific Computing Research Unit (SCRU) at UCT. Luminaries such as Dr. Neil Lane, the Science advisor to the President of the United States Bill Clinton, have visited his laboratory.

His research group develops computational methods for investigating chemical and reactions and catalytic processes. In 2009 Nvidia Corporation awarded Prof. Naidoo an Nvidia Professor Partnership grant to advance the group’s research programme that is centered, on the development of quantum code that is accelerated by Graphical Processing Units (GPUs). This compliments is the highly successful sampling FEARCF (Free Energies from Reaction Coordinate Forces) method that has been developed over the last 12 years. The key goal is to produce hybrid ab initio-classical mechanics (QM/MM) software capable of nanosecond simulations on GPU based clusters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naidoo, K.J. FEARCF a multidimensional free energy method for investigating conformational landscapes and chemical reaction mechanisms. Sci. China Chem. 54, 1962–1973 (2011). https://doi.org/10.1007/s11426-011-4423-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4423-7

Keywords

Navigation