Skip to main content
Log in

DNA template-synthesized silver nanoparticles: A new platform for high-performance fluorescent biosensing of biothiols

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

To develop the high-performance fluorescent bio-sensors, the metal nanoparticles were employed as nanoquenchers and attracted reasonable attention in the design of fluorescent biosensors. In this work, silver nanoparticles (AgNPs) were obtained via reduction of Ag+ on FAM-labeled DNA template. For the tight binding between AgNPs and DNA, the template-synthesized AgNPs turned out high quenching efficiency and could be applied as super nanoquenchers to establish the biosensing platform for fluorescent detection. As an example, the template-synthesized DNA-AgNPs conjugates were employed in sensing thiols. By forming S-Ag bonds, thiols interact intensely with AgNPs and replace the FAM-labeled DNA off from the surface of AgNPs, resulting in a fluorescence enhancement. Besides the advantages of lower background and higher signal-to-background ratio (S/B), the conjugates present better stability, making them applicable in complicated biological fluids. To further evidence the feasibility of sensing thiols in real samples, the thiols in human urine were detected. The total amount of free thiols found in human urine was ranging from 229 μM to 302 μM with the proposed sensor. To conclude the reliability, low content of Cys was added and the recovery was 98%–103%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev, 2005, 105: 1547–1562

    Article  CAS  Google Scholar 

  2. Lu Y, Liu JW. Smart nanomaterials inspired by biology: Dynamic assembly of error-free nanomaterials in response to multiple chemical and biological stimuli. Acc Chem Res, 2007, 40: 315–323

    Article  CAS  Google Scholar 

  3. Storhoff JJ, Lucas AD, Garimella V, Bao YP, Müller UR. Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat Biotechnol, 2004, 22: 883–887

    Article  CAS  Google Scholar 

  4. Guo WW, Yuan JP, Dong QZ, Wang EK. Highly sequence-dependent formation of fluorescent silver nanoclusters in hybridized DNA duplexes for single nucleotide mutation identification. J Am Chem Soc, 2009, 132: 932–934

    Article  Google Scholar 

  5. Zhang J, Ting BP, Jana NR, Gao, ZQ, Ying JY. Ultrasensitive electrochemical DNA biosensors based on the detection of a highly characteristic solid-state process. Small, 2009, 5: 1414–1417

    Article  CAS  Google Scholar 

  6. Maxwell DJ, Taylor JR, Nie SM. Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc, 2002, 124: 9606–9612

    Article  CAS  Google Scholar 

  7. Sun IC, Lee S, Koo H, Kwon IC, Choi K, Ahn CH, Kim K. Caspase sensitive gold nanoparticle for apoptosis imaging in live cells. Bioconjugate Chem, 2010, 21: 1939–1942

    Article  CAS  Google Scholar 

  8. Wang H, Wang YX, Jin JY, Yang RH. Gold nanoparticle-based colorimetric and “turn-on” fluorescent probe for mercury(II) ions in aqueous solution. Anal Chem, 2008, 80: 9021–9028

    Article  CAS  Google Scholar 

  9. Jin Y, Li HY, Bai JY. Homogeneous selecting of a quadruplexbinding ligand-based gold nanoparticle fluorescence resonance energy transfer assay. Anal Chem, 2009, 81: 5709–5715

    Article  CAS  Google Scholar 

  10. Wang H, Li JS, Wang YX, Jin JY, Yang RH, Wang KM, Tan WH. Combination of DNA ligase reaction and gold nanoparticle-quenched fluorescent oligonucleotides: A simple and efficient approach for fluorescent assaying of single-nucleotide polymorphisms. Anal Chem, 2010, 82: 7684–7690

    Article  CAS  Google Scholar 

  11. Pihlasalo S, Kirjavainen J, Hänninen P, Härmä H. Ultrasensitive protein concentration measurement based on particle adsorption and fluorescence quenching. Anal Chem, 2009, 81: 4995–5000

    Article  CAS  Google Scholar 

  12. Li HX, Rothberg LJ. DNA sequence detection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal Chem, 2004, 76: 5414–5417

    Article  CAS  Google Scholar 

  13. Oh E, Hong MY, Lee D, Nam SH, Yoon HC, Kim HS. Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. J Am Chem Soc, 2005, 127: 3270–3271

    Article  CAS  Google Scholar 

  14. Sun YG, Xia YN. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298: 2176–2179

    Article  CAS  Google Scholar 

  15. Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO. Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater, 2002, 1: 169–172

    Article  CAS  Google Scholar 

  16. Kuo PL, Chen WF. Formation of silver nanoparticles under structured amino groups in pseudo-dendritic poly(allylamine) derivatives. J Phys Chem B, 2003, 107: 11267–11272

    Article  CAS  Google Scholar 

  17. Shang L, Dong SJ. Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. Chem Commun, 2008, 1088-1090

  18. Petty JT, Zheng J, Hud NV, Dickson RM. DNA-templated Ag nanocluster formation. J Am Chem Soc, 2004, 126: 5207–5212

    Article  CAS  Google Scholar 

  19. Richards CI, Choi S, Hsiang JC, Antoku Y, Vosch T, Bongiorno A, Tzeng YL, Dickson RM. Oligonucleotide-stabilized Ag nanocluster fluorophores. J Am Chem Soc, 2008, 130: 5038–5039

    Article  CAS  Google Scholar 

  20. Berti L, Alessandrini A, Facci P. DNA-templated photoinduced silver deposition. J Am Chem Soc, 2005, 127: 11216–11217

    Article  CAS  Google Scholar 

  21. Zinchenko AA, Yoshikawa K, Baigl D. DNA-templated silver nanorings. Adv Mater, 2005, 17: 2820–2823

    Article  CAS  Google Scholar 

  22. Lakowicz J. Principles of Fluorescence Spectroscopy, 3rd. Springer, 2006

  23. Wang WH, Rusin O, Xu XY, Kim KK, Escobedo JO, Fakayode SO, Fletcher KA, Lowry M, Schowalter CM, Lawrence CM, Fronczek FR, Warner IM, Strongin RM. Detection of homocysteine and cysteine. J Am Chem Soc, 2005, 127: 15949–15958

    Article  CAS  Google Scholar 

  24. Tanaka F, Mase N, Barbas CF. Determination of cysteine concentration by fluorescence increase: Reaction of cysteine with a fluorogenic aldehyde. Chem Commun, 2004, 1762-1763

  25. Lee KS, Kim TK, Lee JH, Kim HJ, Hong JI. fluorescence turn-on probe for homocysteine and cysteine in water. Chem Commun, 2008, 6173–6175

  26. Shao N, Jin JY, Cheung SM, Yang RH, Chan WH, Mo T. Spiropyran-based ensemble for visual recognition and quantification of cysteine and homocysteine at physiological levels. Angew Chem Int Ed, 2006, 45: 4944–4948

    Article  CAS  Google Scholar 

  27. Sudeep PK, Joseph STS, Thomas KG. Selective detection of cysteine and glutathione using gold nanorods. J Am Chem Soc, 2005, 127: 6516–6517

    Article  CAS  Google Scholar 

  28. Chen Z, Luo SL, Liu CB, Cai QY. Simple and sensitive colorimetric detection of cysteine based on ssDNA-stabilized gold nanoparticles. Anal Bioanal Chem, 2009, 395: 489–494

    Article  CAS  Google Scholar 

  29. Lu C, Zu YB. Specific detection of cysteine and homocysteine: recognizing one-methylene difference using fluorosurfactant-capped gold nanoparticles. Chem Commun, 2007, 3871-3873

  30. Shang L, Qin CJ, Wang T, Wang M, Wang LX, Dong SJ. Fluorescent conjugated polymer-stabilized gold nanoparticles for sensitive and selective detection of cysteine. J Phys Chem C, 2007, 111: 13414–13417

    Article  CAS  Google Scholar 

  31. Kuśmierek K, Glowacki R, Bald E. Analysis of urine for cysteine, cysteinylglycine, and homocysteine by high-performance liquid chromatography. Anal Bioanal Chem, 2006, 385: 855–860

    Article  Google Scholar 

  32. Fermo I, Arcelloni C, Paroni R. High-performance liquid chromatographic method to quantify total cysteine excretion in urine. Anal Biochem, 2002, 307: 181–183

    Article  CAS  Google Scholar 

  33. Rafii M, Elango R, Courtney-Martin G, House JD, Fisher L, Pencharz PB. High-throughput and simultaneous measurement of homocysteine and cysteine in human plasma and urine by liquid chromatography-electro spray tandem mass spectrometry. Anal Biochem, 2007, 371: 71–81

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RongHua Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, J., Ouyang, X., Li, J. et al. DNA template-synthesized silver nanoparticles: A new platform for high-performance fluorescent biosensing of biothiols. Sci. China Chem. 54, 1266–1272 (2011). https://doi.org/10.1007/s11426-011-4320-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4320-0

Keywords

Navigation