Skip to main content
Log in

Facile shape and size-controlled growth of uniform magnetite and hematite nanocrystals with tunable properties

  • Articles
  • Special Topic · Inorganic Solid State Chemistry and Energy Materials
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Monodispersed magnetite Fe3O4 and hematite α-Fe2O3 nanocrystals have been grown in co-solvents of alcohol and water. Either the shape or the size of the nanocrystals could be easily controlled. Both the phases and nanostructures have been characterized by powder X-ray diffraction patterns and electron microscopy. The magnetic and catalytic properties of these products were investigated and compared with each other. The obtained results clearly demonstrate that these iron oxide nanocrystals are soft ferromagnetic at room temperature and α-Fe2O3 has a more effective catalytic property on the thermal decomposition of ammonium perchlorate than Fe3O4. Based on the experimental data, it is proposed that the magnetic and catalytic properties of these nanocrystals are dependent not only on the size and shape, but also on the surface structure of the nanocrystals. The nanoplates with significant anisotropic nanostructure demonstrate a highly enhanced performance as compared to nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Thompson DA, Best JS. The future of magnetic data storage technology. Ibm J Res Dev, 2000, 44: 311–322

    Article  CAS  Google Scholar 

  2. Mitra S, Poizot P, Finke A, Tarascon JM. Growth and electrochemical characterization versus lithium of Fe3O4 electrodes made via electrodeposition. Adv Funct Mater, 2006, 16: 2281–2287

    Article  CAS  Google Scholar 

  3. Zhou J, Song H, Chen X, Zhi L, Yang S, Huo J, Yang W. Carbon-encapsulated metal oxide hollow nanoparticles and metal oxide hollow nanoparticles: A general synthesis strategy and its application to lithium-ion batteries. Chem Mater, 2009, 21: 2935–2940

    Article  CAS  Google Scholar 

  4. Hwang SO, Kim CH, Myung Y, Park SH, Park J, Kim J, Han CS, Kim JY. Synthesis of vertically aligned manganese-doped Fe3O4 nanowire arrays and their excellent room-temperature gas sensing ability. J Phys Chem C, 2008, 112: 13911–13916

    Article  CAS  Google Scholar 

  5. Chen J, Xu L, Li W, Gou X. alpha-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater, 2005, 17: 582–586

    Article  CAS  Google Scholar 

  6. Dobson J. Magnetic nanoparticles for drug delivery. Drug Dev Res, 2006, 67: 55–60

    Article  CAS  Google Scholar 

  7. Alexiou C, Schmid RJ, Jurgons R, Kremer M, Wanner G, Bergemann C, Huenges E, Nawroth T, Arnold W, Parak FG. Targeting cancer cells: Magnetic nanoparticles as drug carriers. Eur Biophys J Biophy, 2006, 35: 446–450

    Article  CAS  Google Scholar 

  8. Oswald P, Clement O, Chambon C, Schouman-Claeys E, Frija G. Liver positive enhancement after injection of superparamagnetic nanoparticles: Respective role of circulating and uptaken particles. Magn Reson Imaging, 1997, 15: 1025–1031

    Article  CAS  Google Scholar 

  9. Wiltshire MCK, Pendry JB, Young IR, Larkman DJ. Microstructured magnetic materials for RF flux guides in magnetic resonance imaging. Science, 2001, 291: 849–851

    Article  CAS  Google Scholar 

  10. Niu M, Huang F, Cui L, Huang P, Yu Y, Wang Y. Hydrothermal synthesis, structural characteristics and enhanced photocatalysis of SnO2/α-Fe2O3 semiconductor nanoheterostructures. ACS Nano, 2010, 4: 681–688

    Article  CAS  Google Scholar 

  11. Liu Q, Cui Z, Ma Z, Bian S, Song W, Wan L. Morphology control of Fe2O3 nanocrystals and their application in catalysis. Nanotechnology, 2007, 18: 385605

    Article  Google Scholar 

  12. Shaikh NS, Enthaler S, Junge K, Beller M. Iron-catalyzed enantioselective hydrosilylation of ketones. Angew Chem Int Ed, 2008, 47: 2497–2501

    Article  CAS  Google Scholar 

  13. Zheng Y, Cheng Y, Wang Y, Bao F, Zhou L, Wei X, Zhang Y, Zheng Q. Quasicubic alpha-Fe2O3 nanoparticles with excellent catalytic performance. J Phys Chem B, 2006, 110: 3093–3097

    Article  CAS  Google Scholar 

  14. Zhang L, Qiao S, Jin Y, Yang H, Budihartono S, Yan F, Wang X, Hao h, Lu G. Fabrication and size-selective bioseparation of magnetic silica nanospheres with highly ordered periodic mesostructure. Adv Funct Mater, 2008, 18: 3203–3212

    Article  CAS  Google Scholar 

  15. Xu C, Sun S. Monodisperse magnetic nanoparticles for biomedical applications. Polym Int, 2007, 56: 821–826

    Article  CAS  Google Scholar 

  16. Kim CY, Escuadro AA, Stair PC, Bedzyk MJ. Atomic-scale view of redox-induced reversible Changes to a metal-oxide catalytic surface: VOx/r-Fe2O3 (0001). J Phys Chem C, 2007, 111: 1874–1877

    Article  CAS  Google Scholar 

  17. Morales MP, Veintemillas-Verdaguer S, Montero MI, Serna CJ, Roig A, Casas L, Martinez B, Sandiumenge F. Surface and internal spin canting in gamma-Fe2O3 nanoparticles. Chem Mater, 1999, 11: 3058–3064

    Article  CAS  Google Scholar 

  18. Tan Y, Zhuang Z, Peng Q, Li Y. Room-temperature soft magnetic iron oxide nanocrystals: Synthesis, characterization, and size-dependent magnetic properties. Chem Mater, 2008, 20: 5029–5034

    Article  CAS  Google Scholar 

  19. Guardiaa P, Batlle-Brugala B, Rocab AG, Iglesiasa O, Moralesb MP, Sernab CJ, Labartaa A, Batlle X. Surfactant effects in magnetite nanoparticles of controlled size. J Magn Magn Mater, 2007, 316: e756–e759

    Article  Google Scholar 

  20. Hyeon T, Lee SS, Park J, Chung Y, Na HB. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc, 2001, 123: 12798–12801

    Article  CAS  Google Scholar 

  21. Wang W, Howe JY, Gu B. Structure and morphology evolution of hematite (alpha-Fe2O3) nanoparticles in forced hydrolysis of ferric chloride. J Phys Chem C, 2008, 112: 9203–9208

    Article  CAS  Google Scholar 

  22. Liang X, Wang X, Zhuang J, Chen Y, Wang D, Li Y. Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. Adv Funct Mater, 2006, 16: 1805–1813

    Article  CAS  Google Scholar 

  23. Chaudhari NK, Kim HC, Sonc D, Yu JS. Easy synthesis and characterization of single-crystalline hexagonal prism-shaped hematite α-Fe2O3 in aqueous media. CrystEngComm, 11: 2264–2267

  24. Zhang D, Zhang X, Ni X, Song J, Zheng H. Fabrication and characterization of Fe3O4 octahedrons via an EDTA-assisted route. Cryst Growth Des, 2007, 7: 2117–2119

    Article  CAS  Google Scholar 

  25. Shavel A, Rodriguez-Gonzalez B, Spasova M, Farle M, Liz-Marzan LM. Synthesis and characterization of iron/iron oxide core/shell nanocubes. Adv Funct Mater, 2007, 17: 3870–3876

    Article  CAS  Google Scholar 

  26. Gao G, Liu X, Shi R, Zhou K, Shi Y, Ma R, Takayama-Muromachi E, Qiu G. Shape-controlled synthesis and magnetic properties of monodisperse Fe3O4 nanocubes. Cryst Growth Des, 2010, 10: 2888–2894

    Article  CAS  Google Scholar 

  27. Guardia P, Batlle-Brugal B, Roca AG, Iglesias O, Morales MP, Serna CJ, Labarta A, Batlle X. Surfactant effects in magnetite nanoparticles of controlled size. J Magn Magn Mater, 2007, 316: E756–E759

    Article  CAS  Google Scholar 

  28. Roca AG, Morales MP, O’Grady K, Serna CJ. Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors. Nanotechnology, 2006, 17: 2783–2788

    Article  CAS  Google Scholar 

  29. Chen L, Yang X, Chen J, Liu J, Wu H, Zhan H, Liang C, Wu M. Finely continuous shape-tuning and optical properties of hematite nanocrystals. Inorg Chem, 2010, 49: 8411–8420

    Article  CAS  Google Scholar 

  30. He Y, Wang S, Li C, Miao Y, Wu Z, Zou B. Synthesis and characterization of functionalized silica-coated Fe3O4 superparamagnetic nanocrystals for biological applications. J Phys D: Appl Phys, 2005, 38: 1342

    Article  CAS  Google Scholar 

  31. O’Grady K, Bradbury A. Particle size analysis in ferrofluids. J Magn Magn Mater, 1983, 39: 91–94

    Article  Google Scholar 

  32. Lin XM, Samia ACS. Synthesis, assembly and physical properties of magnetic nanoparticles. J Magn Magn Mater, 2006, 305: 100–109

    Article  CAS  Google Scholar 

  33. Zhang Y, Ying C, Dong L. One-step synthesis and properties of urchin-like PS/α-Fe2O3 composite hollow microspheres. Nanotechnology, 2007, 18: 435608

    Article  Google Scholar 

  34. Liu L, Kou H, Mo W, Liu H, Wang Y. Surfactant-assisted synthesis of α-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties. J Phys Chem B, 2006, 110: 15218–15223

    Article  CAS  Google Scholar 

  35. Linderoth S, Hendriksen PV, Bodker F, Wells S, Davies K, Charles SW, Morup S. On spin-canting in maghemite particles. J Appl Phys, 1994, 75: 6583–6585

    Article  CAS  Google Scholar 

  36. Roca AG, Morales MP, O’Grady K, Serna CJ. Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors. Nanotechnology, 2006, 17: 2783

    Article  CAS  Google Scholar 

  37. Xu H, Wang X, Zhang L. Selective preparation of nanorods and micro-octahedrons of Fe2O3 and their catalytic performances for thermal decomposition of ammonium perchlorate. Powder Technol, 2008, 185: 176–180

    Article  CAS  Google Scholar 

  38. Galwey AK, Mohamed MA. Nitryl perchlorate as the essential intermediate in the thermal decomposition of ammonium perchlorate. Nature, 1984, 311: 642–645

    Article  CAS  Google Scholar 

  39. Yin J, Lu Q, Yu Z, Wang J, Pang H, Gao F. Hierarchical ZnO nanorod-assembled hollow superstructures for catalytic and photoluminescence applications. Cryst Growth Des, 2010, 10: 40–43

    Article  CAS  Google Scholar 

  40. Singh G, Kapoor IPS, Dubey S, Siril PF. Kinetics of thermal decomposition of ammonium perchlorate with nanocrystals of binary transition metal ferrites. Propellants Explos Pyrotech, 2009, 34: 72–77

    Article  CAS  Google Scholar 

  41. Vyazovkin S, Wight CA. Kinetics of thermal decomposition of cubic ammonium perchlorate. Chem Mater, 1999, 11: 3386–3393

    Article  CAS  Google Scholar 

  42. Ma Z. Effect of Fe2O3 in Fe2O3/AP composite particles on thermal decomposition of AP and on burning rate of the composite propellant. Propellants Explos Pyrotech, 2006, 31: 447–451

    Article  CAS  Google Scholar 

  43. Reid DL, Russo AE, Carro RV, Stephens MA, LePage AR, Spalding TC, Petersen EL, Seal S. Nanoscale additives tailor energetic materials. Nano Lett, 2007, 7: 2157–2161

    Article  CAS  Google Scholar 

  44. Xie X, Li Y, Liu Z, Haruta M, Shen W. Low-temperature oxidation of CO catalysed by Co3O4 nanorod. Nature, 458: 746–749

  45. Cao M, Liu T, Gao S, Sun G, Wu X, Hu C, Wang Z. Single-crystal dendritic micro-pines of magnetic alpha-Fe2O3: Large-scale synthesis, formation mechanism, and properties. Angew Chem Int Ed, 2005, 44: 4197–4201

    Article  CAS  Google Scholar 

  46. Kapoor IPS, Srivastava P, Singh G. Nanocrystalline transition metal oxides as catalysts in the thermal decomposition of ammonium perchlorate. Propellants Explos Pyrotech, 2009, 34: 351–356

    Article  CAS  Google Scholar 

  47. Patil PR, Krishnamurthy VN, Joshi SS. Effect of nano-copper oxide and copper chromite on the thermal decomposition of ammonium perchlorate. Propellants Explos Pyrotech, 2008, 33: 266–270

    Article  CAS  Google Scholar 

  48. Sun X, Qiu X, Li L, Li G. ZnO twin-cones: Synthesis, photoluminescence, and catalytic decomposition of ammonium perchlorate. Inorg Chem, 2008, 47: 4146–4152

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MingMei Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Liu, W., Chen, J. et al. Facile shape and size-controlled growth of uniform magnetite and hematite nanocrystals with tunable properties. Sci. China Chem. 54, 923–929 (2011). https://doi.org/10.1007/s11426-011-4286-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4286-y

Keywords

Navigation