Skip to main content
Log in

Charge doping effect on σ-π conjugated copolymers

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The charge-doping effect on the geometric and the electronic structures of organosilicon oligomers nSi x (C=C) + y has been studied using density functional theory. Charge-doping can significantly lower the excitation energies. Interchain hole hopping mainly occurs between the π-conjugated units. A doped nSi x (C=C) + y oligomer can undergo a structural rearrangement. The simulated UV/vis absorption peak of the rearranged structure is located at higher energy than the non-rearranged one. The hole transfer rate is significantly decreased if a doped molecule undergoes a rearrangement. These results offer a basis to explain previously observed experimental phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ohshita J, Kanaya D, Ishikawa M, Yamanaka T. Polymeric organo-silicon systems. 6. Synthesis and properties of trans-poly[(disilanylene) ethenylene]. J Organomet Chem, 1989, 369: C18–C20

    Article  CAS  Google Scholar 

  2. Iwahara T, Hayase S, West R. Synthesis and properties of ethynylene-disilanylene copolymers. Macromolecules, 1990, 23: 1298–1301

    Article  CAS  Google Scholar 

  3. Ijadi-Maghsoodi S, Pang, Y, Barton TJ. Efficient, one-pot, synthesis of silylene-acetylene and disilylene-acetylene preceramic polymers from trichloroethylene. J Polym Sci, Part A: Polym Chem, 1990, 28: 955–965

    Article  CAS  Google Scholar 

  4. Ishikawa M, Hatano T, Hasegawa Y, Horio T, Kunai A, Miyai Y, Ishida T, Tsukihara T, Yamanaka T, Koike T, Shioya J. Polymeric organosilicon systems. 12. Synthesis and anionic ring-opening polymerization of 1,2,5,6-tetrasilacycloocta-3,7-diynes. Organometallics, 1992, 11: 1604–1618

    Article  CAS  Google Scholar 

  5. Ishikawa M, Horio T, Hatano T, Kunai A. Polymeric organosilicon systems. 15. Thermal- and radical-induced polymerization of 1,2,5,6-tetrasilacycloocta-3,7-diynes. Organometallics, 1993, 12: 2078–2084

    Article  CAS  Google Scholar 

  6. Toyoda E, Kunai A, Ishikawa M. Polymeric organosilicon systems. 24. anionic polymerization of 4,5,10-trisilabicyclo[6.3.0]undeca-1(11), 8-diene-2,6-diynes. Organometallics, 1995, 14: 1089–1091

    Article  CAS  Google Scholar 

  7. Ishikawa M, Sakamoto H, Ishii M, Ohshita J. Polymeric organosilicon systems. 17. synthesis and photochemical and conducting properties of poly[o-(disiladylene)phenylene and m-(disilanylene)phenylene]s. J Polym Sci, A: Polym Sci, 1993, 31: 3281–3289

    Article  CAS  Google Scholar 

  8. Kira M, Tokura S. Thermal ring-opening polymerization of [2.2] paracyclophanes having two disilanylene bridges. Organometallics, 1997, 16: 1100–1102

    Article  CAS  Google Scholar 

  9. Ohshita J, Uemura T, Inoue T, Hino K, Kunai A. Preparation of poly (silylene-p-phenylene)s bearing a benzo crown pendant group and their iono- and solvatochromic behavior in the emission spectra. Organometallics, 2006, 25: 2225–2229

    Article  CAS  Google Scholar 

  10. Li Z, Iida K, Tomisaka Y, Yoshimura A, Hirao T, Nomoto A, Ogawa A. New entry to the construction of Si-Si linkages: Sm/SmI2-induced efficient reductive coupling of organochlorosilanes. Organometallics, 2007, 26: 1212–1216

    Article  Google Scholar 

  11. Zhou X, Niu Y, Huang F, Liu MS, Jen AKY. Highly efficient UV-violet light-emitting polymers derived from fluorene and tetraphenylsilane derivatives: molecular design toward enhanced electroluminescent performance. Macromolecules, 2007, 40: 3015–3020

    Article  CAS  Google Scholar 

  12. Ohshita J, Kanaya D, Ishikawa M, Koike T, Yamanaka T. Polymeric organosilicon systems. 10. Synthesis and conducting properties of poly [2,5-(disilanylene)thienylenes]. Macromolecules, 1991, 24: 2106–2107

    Article  CAS  Google Scholar 

  13. Chicart P, Corriu RJP, Moreau JJE, Garnier F, Yassar A. Selective synthetic routes to electroconductive organosilicon polymers containing thiophene units. Chem Mater, 1991, 3: 8–10

    Article  CAS  Google Scholar 

  14. Chicart P, Corriu RJP, Moreau JJE, Garnier F, Yassar A. Inorganic and Organometallic Polymers with Special Properties. Dordrecht: Kluwer Academic, 1992. 179–188

    Google Scholar 

  15. Fang MC, Watanabe A, Matsuda M. Synthesis of silyene-phenylene and silylene-thienylene copolymers and their optical-properties. J Organomet Chem, 1995, 489: 15–22

    Article  CAS  Google Scholar 

  16. Hayashi T, Uchimaru Y, Reddy NP, Tanaka M. Synthesis and con ductivity of germanium-containing or silicon-containing polymers. Chem Lett, 1992, 647–650

  17. Ohshita J, Matsuguchi A, Fukumori K, Hong RF, Ishikawa M, Yamanaka T, Koike T, Shioya J. Polymeric organosilicon systems. 11. Synthesis and some properties of poly(disilanylenebutenyne-1,4-diyls) and poly[(methylphenylsilylene)butenyne-1,4-diyl]. Macromolecules, 1992, 25: 2134–2140

    Article  CAS  Google Scholar 

  18. Ohshita J, Kanaya D, Ishikawa M. Polymeric organosilicon systems. 14. synthesis and some properties of alternating polymers composed of a dithienylene group and a mono-silanylene, di-silanylene or trisilanylene unit. Appl Organomet Chem, 1993, 7: 269–277

    Article  CAS  Google Scholar 

  19. Ohshita J, Hashimoto M, Lee KH, Yoshida H, Kunai A. Synthesis of organosilanylene-thienylene alternating oligomers bearing ether side chains. J Organomet Chem, 2003, 682: 267–271

    Article  CAS  Google Scholar 

  20. Ohshita J, Kunai A. Polymers with alternating organosilicon and piconjugated units. Acta Polym, 1998, 49: 379–403

    Article  CAS  Google Scholar 

  21. Uhlig W. Synthesis, functionalization, and cross-linking reactions of organosilicon polymers using silyl triflate intermediates. Prog Polym Sci, 2002, 27: 255–305

    Article  CAS  Google Scholar 

  22. Baumgartner J, Frank D, Kayser C, Marschner C. Comparative study of structural aspects of branched oligosilanes. Organometallics, 2005, 24: 750–761

    Article  CAS  Google Scholar 

  23. Li Y, Buriak JM. Dehydrogenative silane coupling on silicon surfaces via early transition metal catalysis. Inorg Chem, 2006, 45: 1096–1102

    Article  CAS  Google Scholar 

  24. Holder SJ, Achilleos M, Jones RG. Increasing molecular weight parameters of a helical polymer through polymerization in a chiral solvent. J Am Chem Soc, 2006, 128: 12418–12419

    Article  CAS  Google Scholar 

  25. Fukazawa A, Tsuji H, Tamao K. All-anti-octasilane: conformation control of silicon chains using the bicyclic trisilane as a building block. J Am Chem Soc, 2006, 128: 6800–6801

    Article  CAS  Google Scholar 

  26. Fogarty HA, Ottosson H, Michl J. Dehydrogenative silane coupling on silicon surfaces via early transition metal catalysis. J Phys Chem B, 2006, 110: 25485–25495

    Article  CAS  Google Scholar 

  27. Tachikawa H, Kawabata H. Structures and electronic states of permethyloligosilane radical ions with all-trans form Sin(CH3)(2n+2) (+/−) (n = 2−6): A density functional theory study. J Chem Theory Comput, 2007, 3: 184–193

    Article  CAS  Google Scholar 

  28. Tachikawa H. Mechanism of electron and hole localization in poly (dimethylsilane) radical ions. J Phys Chem A, 2007, 111: 10134–10138

    Article  CAS  Google Scholar 

  29. Krempner C, Reinke H. An approach to dendritic oligosilanes: Controlling the conformation through ring formation. Organometallics, 2007, 26: 2053–2057

    Article  CAS  Google Scholar 

  30. Kosa M, Karni M, Apeloig Y. Theoretical study of ladder polysilanes Organometallics, 2007, 26: 2806–2814

    Article  CAS  Google Scholar 

  31. Tour JM. Conjugated macromolecules of precise length and constitution, organic synthesis for the construction of nanoarchitectures. Chem Rev, 1996, 96: 537–554

    Article  CAS  Google Scholar 

  32. Kertesz M. Handbook of Organic Conductive Molecules and Polymers. New York: John Wiley & Sons Ltd, 1997. Vol. 1–4

    Google Scholar 

  33. Roncali J. Synthetic principles for bandgap control in linear π-conjugated systems. Chem Rev, 1997, 97: 173–206

    Article  CAS  Google Scholar 

  34. Groenendaal LB, Jonas F, Freitag D, Pielartzik H, Reynolds JR. Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future. Adv Mater, 2000, 12: 481–494

    Article  CAS  Google Scholar 

  35. Brédas JL, Beljonne D, Coropceanu V, Cornil J. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: A molecular picture. Chem Rev, 2004, 104: 4971–5004

    Article  Google Scholar 

  36. Ohshita J, Takata A, Kai H, Kunai A, Komaguchi K, Shiotani M, Adachi A, Sakamaki K, Okita K, Harima Y, Kunugi Y, Yamashita K, Ishikawa M. Synthesis of polymers with alternating organosilanylene and oligothienylene units and their optical, conducting, and hole-transporting properties. Organometallics, 2000, 19: 4492–4498

    Article  CAS  Google Scholar 

  37. Ohshita J, Matsushige K, Kunai A, Adachi A, Sakamaki K, Okita K. Synthesis and ring-opening reactions of 1,8-silanonaphthalenes. Organometallics, 2000, 19: 5582–5588

    Article  CAS  Google Scholar 

  38. Ohshita J, Yoshimoto K, Hashimoto M, Hamamoto D, Kunai, A, Harima Y, Kunugi Y, Yamashita K, Kakimoto M, Ishikawa M. Synthesis of organosilanylene-pentathienylene alternating polymers and their application to the hole-transporting materials in double-layer electroluminescent devices. J Organomet Chem, 2003, 665: 29–32

    Article  CAS  Google Scholar 

  39. Ohshita J, Hashimoto M, Lee K, Yoshida H, Kunai A. Synthesis of organosilanylene-thienylene alternating oligomers bearing ether side chains. J Organomet Chem, 2003, 682: 267–271

    Article  CAS  Google Scholar 

  40. Zhang G, Ma J, Jiang Y. Charge-doped and heteroatom-substituted polysilane, poly(vinylenedisilanylene), and poly(butadienylenedisilanylene): Electronic structures and band gaps. J Phys Chem B, 2005, 109: 13499–13509

    Article  CAS  Google Scholar 

  41. Parr RG, Yang, W. Density-functional Theory of Atoms and Molecules. New York: Oxford University Ltd, 1989

    Google Scholar 

  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian, Inc., Pittsburgh

    Google Scholar 

  43. Levine ZH, Soven P. Time-dependent local-density theory of dielectric effects in small molecules. Phys Rev A, 1980, 21: 1561–1572

    Article  Google Scholar 

  44. Politzer P, Nurray JS. Molecular Electrostatic Potentials: Concepts and Applications. Amsterdam: Elsevier Ltd, 1996. 649–660

    Google Scholar 

  45. Boris B, Petia B. Molecular electrostatic potential as reactivity index in hydrogen bonding: Ab initio molecular orbital study of complexes of nitrile and carbonyl compounds with hydrogen fluoride. J Phys Chem A, 1999, 103: 6793–6799

    Article  Google Scholar 

  46. Gadre SR, Bhadane PK. Molecular electrostatics for exploring complexes of carbonyl compounds and hydrogen fluoride. J Phys Chem A, 1999, 103: 3512–3517

    Article  CAS  Google Scholar 

  47. Laaksonen L. A graphics program for the analysis and display of molecular-dynamics trajectories. J Mol Graphics, 1992, 10: 33–34

    Article  CAS  Google Scholar 

  48. Maxka J, Teramae H. Electronic structures of polymers containing carbon multiple bond and disilane units in their backbone. Macromolecules, 1999, 32: 7045–7050

    Article  CAS  Google Scholar 

  49. Ohshita J, Watanabe T, Kanaya D, Ohsaki H, Ishikawa M, Ago H, Tanaka K, Yamabe T. Polymeric organosilicon systems. 22. Synthesis and photochemical properties of poly[(disilanylene)oligophenylylenes] and poly[(silylene)biphenylylenes]. Organometallics, 1994, 13: 5002–5012

    Article  CAS  Google Scholar 

  50. Nate K, Ishikawa M, Ni H, Watanabe H, Saheki, Y. Photolysis of polymeric organosilicon systems. 4. Photochemical behavior of poly [p-(disilanylene)phenylene]. Organometallics, 1987, 6: 1673–1679

    Article  CAS  Google Scholar 

  51. Zhang G, Ma J, Jiang Y. Effects of silole content and doping on the electronic structures and excitation energies of silole/thiophene cooligomers. Macromolecules, 2003, 36: 2130–2140

    Article  CAS  Google Scholar 

  52. Hutchison GR, Ratner MA, Marks TJ. Hopping transport in conductive heterocyclic oligomers: Reorganization energies and substituent effects. J Am Chem Soc, 2005, 127: 2339–2350

    Article  CAS  Google Scholar 

  53. Ulstrup J, Jortner J. Effect of intramolecular quantum modes on free-energy relationships for electron-transfer reactions. J Chem Phys, 1975, 63: 4358–4368

    Article  CAS  Google Scholar 

  54. Siders P, Marcus RA. Quantum effects in electron-transfer reactions. J Am Chem Soc, 1981, 103: 741–747

    Article  CAS  Google Scholar 

  55. Siders P, Marcus RA. Quantum effects for electron-transfer reactions in the “inverted region”. J Am Chem Soc, 1981, 103: 748–752

    Article  CAS  Google Scholar 

  56. Miller JR, Beitz JV, Huddleston RK. Effect of free energy on rates of electron transfer between molecules. J Am Chem Soc, 1984, 106: 5057–5068

    Article  CAS  Google Scholar 

  57. Ishikawa M, Hatano T, Hasegawa Y, Horio T, Kunai A, Miyai A, Ishida T, Tsukihara T, Yamanaka T, Koike T, Shioya J. Polymeric organosilicon systems. 12. Synthesis and anionic ring-opening polymerization of 1,2,5,6-tetrasilacycloocta-3,7-diynes. Organometallics, 1992, 11: 1604–1618

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuiLing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Shang, Y., Zhang, H. et al. Charge doping effect on σ-π conjugated copolymers. Sci. China Chem. 54, 975–984 (2011). https://doi.org/10.1007/s11426-011-4252-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4252-8

Keywords

Navigation