Skip to main content
Log in

A resource recycling technique of hydrogen production from the catalytic degradation of organics in wastewater

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

A resource recycling technique of hydrogen production from the catalytic degradation of organics in wastewater by aqueous phase reforming (APR) has been proposed. It is worthy of noting that this technique may be a potential way for the purification of refractory and highly toxic organics in water for hydrogen production. Hazardous organics (such as phenol, aniline, nitrobenzene, tetrahydrofuran (THF), toluene, N,N-dimethylformamide (DMF) and cyclohexanol) in water could be completely degraded into H2 and CO2 with high selectivity over Raney Ni, and Sn-modified Raney Ni (Sn-Raney-Ni) or Pd/C catalyst under mild conditions. The experimental results operated in tubular and autoclave reactors, indicated that the degradation degree of organics and H2 selectivity could reach 100% under the optimal reaction conditions. The Sn-Raney-Ni (Sn/Ni=0.06) and Pd/C catalysts show better catalytic performances than the Raney Ni catalyst for the degradation of organics in water into H2 and CO2 by the aqueous phase reforming process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou J Q. Industrial Wastewater Treatment Technology (in Chinese). Beijing: Chem Ind Press, 2003

    Google Scholar 

  2. Ronald W P, John C C, Richard P L, Peter C G. The effects of three organic chemicals on the upper thermal tolerances of four freshwater fishes. Environ Toxicol Chem, 2007, 26(7): 1454–1459

    Article  Google Scholar 

  3. Eker S, Kargi F. Biological treatment of 2,4-dichlorophenol containing synthetic wastewater using a rotating brush biofilm reactor. Bioresour Technol, 2008, 99(7): 2319–2325

    Article  CAS  Google Scholar 

  4. Eisenhaner H R. Oxidation of phenolic waste water. J WPCF, 1964, 36(9): 1116–1128

    Google Scholar 

  5. Alborzfar M, Escande K, Allen S J. Removal of 3,4-dichlorobut-1-ene using ozone oxidation. Water Res, 2000, 34(11): 2963–2970

    Article  CAS  Google Scholar 

  6. Chen G H. Electrochemical technologies in wastewater treatment. Sep Purif Technol, 2003, 1: 1–31

    Google Scholar 

  7. Mishra V S, Vijaykumar V, Joshi J B. Wet air oxidation. Ind Eng Chem Res, 1995, 34(1): 2–48

    Article  CAS  Google Scholar 

  8. Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions. Bull Environ Contam Toxicol, 1976, 16: 697–701

    Article  CAS  Google Scholar 

  9. Gao J L. Supercritical hydration of organic compounds. The potential of mean force for benzene dimer in supercritical water. J Am Chem Soc, 1993, 115: 6893–6895

    Article  CAS  Google Scholar 

  10. Li Y F, Ren N Q, Yang C P. The molecular characterization and hydrogen production of a new species of anaerobe. J Environ Sci Health Part A, 2005, 40(10): 1929–1938

    CAS  Google Scholar 

  11. Ren N Q, Li Y F, Li J Zh, Wang A J, Ding J. Progress of fermentative biohydrogen production in China. J Chem Ind Eng (in Chinese), 2004, 55: 7–13

    Google Scholar 

  12. Ting C H, Lee D J. Production of hydrogen and methane from wastewater sludge using anaerobic fermentation. Int J Hydrogen Energy, 2007, 32(6): 677–682

    Article  CAS  Google Scholar 

  13. Yang P L, Zhang R H, McGarvey J A, Benemann J R. Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. Int J Hydrogen Energy, 2007, 32(18): 4761–4771

    Article  CAS  Google Scholar 

  14. Cortright R D, Davda R R, Dumesic J A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature, 2002, 418: 964–967

    Article  CAS  Google Scholar 

  15. Davada R R, Dumesic J A. Catalytic reforming of oxygenated hydrocarbons for hydrogen with low levels of carbon monoxide. Angew Chem Int Ed, 2003, 42: 4068–4071

    Article  Google Scholar 

  16. Davada R R, Dumesic J A. Renewable hydrogen by aqueous-phase reforming of glucose. Chem Commun, 2004, 1: 36–37

    Article  Google Scholar 

  17. Shabaker J W, Huber G W, Dumesic J A. Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts. J Catal, 2004, 222(1): 180–191

    Article  CAS  Google Scholar 

  18. Davda R R, Shabaker J W, Huber G W, Cortright R D, Dumesic J A. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Appl Catal B, 2005, 56(1–2): 171–186

    Article  CAS  Google Scholar 

  19. Huber G W, Shabaker J W, Dumesic J A. Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons. Science, 2003, 300: 2075–2077

    Article  CAS  Google Scholar 

  20. Bai Y, Lu C S, Ma L, Chen P, Zheng Y F, Li X N. Hydrogen production by aqueous-phase reforming of ethylene glycol over Pt catalysts supported on γ-Al2O3 modified with Ce and Mg. Chin J Catal (in Chinese), 2006, 27(3): 275–280

    CAS  Google Scholar 

  21. Li X N, Xiang Y Zh. A novel liquid system of catalytic hydrogenation. Sci China Ser B-Chem, 2007, 50(6): 746–753

    Article  CAS  Google Scholar 

  22. Li X N, Zhang J H, Xiang Y Zh, Ma L, Zhang Q F, Lu Ch Sh, Wang H, Bai Y. One pot synthesis of N-ethylaniline from nitrobenzene and ethanol. Sci China Ser B-Chem, 2008, 51(3): 248–256

    Article  CAS  Google Scholar 

  23. Kellner C S, Bell A T. The kinetics and mechanism of carbon monoxide hydrogenation over alumina-supported ruthenium. J Catal, 1981, 70: 418–432

    Article  CAS  Google Scholar 

  24. Grenoble D C, Estadt M M, Ollis D F. The chemistry and catalysis of the water gas shift reaction: 1. The kinetics over supported metal catalysts. J Catal, 1981, 67: 90–102

    Article  CAS  Google Scholar 

  25. Vannice M A. The catalytic synthesis of hydrocarbons from H2/CO mixtures over the Group VIII metals: V. The catalytic behavior of silica-supported metals. J Catal, 1977, 50: 228–236

    Article  CAS  Google Scholar 

  26. Shabaker J W, Simonetti D A, Cortright R D, Dumesic J A. Sn-modified Ni catalysts for aqueous-phase reforming: Characterization and deactivation studies. J Catal, 2005, 231(1): 67–76

    Article  CAS  Google Scholar 

  27. Chakchouk M, Deiber G, Foussard J N, Debellefontaine H. Complete treatment of nitrogeneous pollutants by catalytic oxidation. Environ Technol, 1995, 16: 645–655

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoNian Li.

Additional information

Supported by the Program for New Century Excellent Talents in University (Grant No. NCET-04-0557), and the Specialized Research Fund for the Doctoral Program of High Education (Grant No. SRFDP-20060337001).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Kong, L., Xiang, Y. et al. A resource recycling technique of hydrogen production from the catalytic degradation of organics in wastewater. Sci. China Ser. B-Chem. 51, 1118–1126 (2008). https://doi.org/10.1007/s11426-008-0105-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0105-5

Keywords

Navigation