Skip to main content
Log in

Multi-segment linear gradient optimization strategy based on resolution map in HPLC

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Based on the mechanism of chromatographic retention (the relationship between the retention of solute and the mobile phase conditions) and method of resolution map, several methods of optimizing multi-segment linear gradient elution conditions were proposed according to the different separation requirements of various samples. These methods were verified using literature data. Moreover, the advantages and disadvantages of these methods were compared. It was proved that the third method is a fast optimization method which is capable of separating all the components with relatively high resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmidt A H, Molnar I. Computer-assisted optimization in the development of a high-performance liquid chromatographic method for the analysis of kava pyrones in Piper methysticum preparations. J Chromatogr A, 2002, 948: 51–63

    Article  CAS  Google Scholar 

  2. Liu C L, Zhu P L, Liu M C. Computer-aided development of a high-performance liquid chromatographic method for the determination of hydroxyanthraquinone derivatives in Chinese herb medicine rhubarb. J Chromatogr A, 1999, 857: 167–174

    Article  CAS  Google Scholar 

  3. Wolcott R G, Dolan J W, Snyder L R. Computer simulation for the convenient optimization of isocratic reversed phase liquid chromatographic separations by varying temperature and mobile phase strength. J Chromatogr A, 2000, 869: 3–25

    Article  CAS  Google Scholar 

  4. Markowski W. Computer-aided optimization of gradient multiple development thin-layer chromatography (III): Multi-stage development over a constant distance. J Chromatogr A, 1996, 726: 185–192

    Article  CAS  Google Scholar 

  5. Markowski W. Computer-aided optimization of gradient multiple development thin-layer chromatography (II): Multi-stage development. J Chromatogr A, 1993, 635: 283–289

    Article  CAS  Google Scholar 

  6. Wrisley L. Use of computer simulations in the development of gradient and isocratic high-performance liquid chromatography methods for analysis of drug compounds and synthetic intermediates. J Chromatogr A, 1993, 628: 191–198

    Article  CAS  Google Scholar 

  7. Chloupek R C, Hancock W S, Snyder L R. Computer simulation as a tool for the rapid optimization of the high-performance liquid chromatographic separation of a tryptic digest human growth hormone. J Chromatogr A, 1992, 594: 65–73

    Article  CAS  Google Scholar 

  8. Baba Y, Kura G. Computer-assisted retention prediction system for inorganic cyclic polyphosphates and its application to optimization of gradients in anion-exchange chromatography. J Chromatogr A, 1991, 550: 5–14

    Article  CAS  Google Scholar 

  9. Baba Y, Ito M K. Optimization of gradients in anion-exchange separations of oligonucleotides using computer-assisted retention prediction and a high-performance liquid chromatographic simulation system. J Chromatogr A, 1989, 485: 647–655

    Article  CAS  Google Scholar 

  10. Dzido T H, Soczewinski E, Gudej J. Computer-aided optimization of high-performance liquid chromatographic analysis of flavonoids from some species of the genus. J Chromatogr A, 1991, 550: 71–76

    Article  CAS  Google Scholar 

  11. Schoenmakers P J, Bartha A, Billiet H A H. Gradient elution methods for predicting isocratic conditions. J Chromatogr A, 1991, 550: 425–447

    Article  CAS  Google Scholar 

  12. Jandera P. Predictive calculation methods for optimization of gradient elution using binary and ternary solvent gradients. J Chromatogr A, 1989, 485: 113–141

    Article  CAS  Google Scholar 

  13. Jandera P. Gradient elution in normal-phase high-performance liquid chromatographic systems. J Chromatogr A, 2002, 965: 239–261

    Article  CAS  Google Scholar 

  14. Jandera P. Optimisation of gradient elution in normal-phase high-performance liquid chromatography. J Chromatogr A, 1998, 797: 11–22

    Article  CAS  Google Scholar 

  15. Nikitas P, Pappa-Louisi A, Papachristos K. Optimisation technique for stepwise gradient elution in reversed-phase liquid chromatography. J Chromatogr A, 2004, 1033: 283–289

    Article  CAS  Google Scholar 

  16. Vivó-Truyols G, Torres-Lapasió J R, García-Alvarez-Coque M C. Enhanced calculation of optimal gradient programs in reversed-phase liquid chromatography. J Chromatogr A, 2003, 1018: 183–196

    Article  Google Scholar 

  17. Gallant S R, Vunnum S, Cramer S M. Optimization of preparative ion-exchange chromatography of proteins: Linear gradient separations. J Chromatogr A, 1996, 725: 295–314

    Article  CAS  Google Scholar 

  18. Lundell N. Implementation and use of gradient predictions for optimization of reversed-phase liquid chromatography of peptides: Practical considerations. J Chromatogr A, 1993, 639: 97–115

    Article  CAS  Google Scholar 

  19. Morris V, Hughes J, Marriott P. Spherical coordinate representations of solvent composition for liquid chromatography method development using experimental design. J Chromatogr A, 2003, 1008: 43–56

    Article  CAS  Google Scholar 

  20. Jandera P. Simultaneous optimisation of gradient time, gradient shape and initial composition of the mobile phase in the high-performance liquid chromatography of homologous and oligomeric series. J Chromatogr A, 1999, 845: 133–144

    Article  CAS  Google Scholar 

  21. Concha-Herrera V, Vivó-Truyols G, Torres-Lapasió J R, García-Alvarez-Coque M C. Limits of multi-linear gradient optimization in reversed-phase liquid chromatography. J Chromatogr A, 2005, 1063: 79–88

    Article  CAS  Google Scholar 

  22. Dolan J W, Snyder L R, Blanc T, Heukelem L V. Selectivity differences for C18 and C8 reversed-phase columns as a function of temperature and gradient steepness (I): Optimizing selectivity and resolution. J Chromatogr A, 2000, 897: 37–50

    Article  CAS  Google Scholar 

  23. Dolan J W, Snyder L R, Djordjevic N M, Hill D W, Waeghe T J. Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time (I): Peak capacity limitations. J Chromatogr A, 1999, 857: 1–20

    Article  CAS  Google Scholar 

  24. Dolan J W, Snyder L R, Djordjevic N M, Hill D W, Waeghe T J. Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time (II): Two-run assay procedures. J Chromatogr A, 1999, 857: 21–39

    Article  CAS  Google Scholar 

  25. Dolan J W, Snyder L R, Wolcott R G, Haber P, Baczek T, Kaliszan R, Sander L C. Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time (III): Improving the accuracy of computer simulation. J Chromatogr A, 1999, 857: 41–68

    Article  CAS  Google Scholar 

  26. Dolan J W, Snyder L R, Djordjevic N M, Hill D W, Saunders D L, Heukelem L V, Waeghe T J. Simultaneous variation of temperature and gradient steepness for reversed-phase high-performance liquid chromatography method development (I): Application to 14 different samples using computer simulation. J Chromatogr A, 1998, 803: 1–31

    Article  CAS  Google Scholar 

  27. Dolan J W, Snyder L R, Saunders D L, Heukelem L V. Simultaneous variation of temperature and gradient steepness for reversed-phase high-performance liquid chromatography method development (II): The use of further changes in conditions. J Chromatogr A, 1998, 803: 33–50

    Article  CAS  Google Scholar 

  28. Li W, Rasmussen H T. Strategy for developing and optimizing liquid chromatography methods in pharmaceutical development using computer-assisted screening and Plackett-Burman experimental design. J Chromatogr A, 2003, 1016: 165–180

    Article  CAS  Google Scholar 

  29. Molnar I. Computerized design of separation strategies by reversed-phase liquid chromatography: Development of DryLab software. J Chromatogr A, 2002, 965: 175–194

    Article  CAS  Google Scholar 

  30. Lu P C, Zhang Y K, Liang X M. High Performance Liquid Chromatography and Expert System. Shenyang: Liaoning Science and Technology Press, 1992

    Google Scholar 

  31. Li R J. Intelligent optimization and chromatographic separation method development system. Dissertation for the Doctor Degree. Dalian Institute of chemical Physics, Chinese Academy of sciences, 1998

  32. Shan Y C, Zhao R H, Zhang W B, Liang Z, Zhang Y K. Fast binary stepwise gradient optimization method for the separation of complex samples. Chinese Journal of Analytical Chemistry (in Chinese), 2002, 30(12): 1444–1447

    CAS  Google Scholar 

  33. Shan Y C, Zhao R H, Zhang W B, Liang Z, Zhang Y K. Optimization of ternary stepwise gradient elution conditions in RP-HPLC. Chinese Journal of Chromatography, 2002, 20(4): 289–294

    CAS  Google Scholar 

  34. http://www.rheodyne.com/products/chromatography/drylab/index.asp

  35. Snyder L R, Kirkland J J, Glajch J L. Practical HPLC Method Development, 2nd ed. New York: John Wiley and Sons, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Weibing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, Y., Zhang, W., Seidel-Morgenstern, A. et al. Multi-segment linear gradient optimization strategy based on resolution map in HPLC. SCI CHINA SER B 49, 315–325 (2006). https://doi.org/10.1007/s11426-006-2004-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-006-2004-y

Keywords

Navigation