Skip to main content
Log in

The symmetric space, strong isotropy irreducibility and equigeodesic properties

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

A smooth curve on a homogeneous manifold G/H is called a Riemannian equigeodesic if it is a homogeneous geodesic for any G-invariant Riemannian metric. The homogeneous manifold G/H is called Riemannian equigeodesic, if for any xG/H and any nonzero yTx(G/H), there exists a Riemannian equigeodesic c(t) with c(0) = x and ċ(0) = y. These two notions can be naturally transferred to the Finsler setting, which provides the definitions for Finsler equigeodesics and Finsler equigeodesic spaces. We prove two classification theorems for Riemannian equigeodesic spaces and Finsler equigeodesic spaces, respectively. Firstly, a homogeneous manifold G/H with a connected simply connected quasi compact G and a connected H is Riemannian equigeodesic if and only if it can be decomposed as a product of Euclidean factors and compact strongly isotropy irreducible factors. Secondly, a homogeneous manifold G/H with a compact semisimple G is Finsler equigeodesic if and only if it can be locally decomposed as a product, in which each factor is Spin(7)/G2, G2/SU(3) or a symmetric space of compact type. These results imply that the symmetric space and the strongly isotropy irreducible space of compact type can be interpreted by equigeodesic properties. As an application, we classify the homogeneous manifold G/H with a compact semisimple G such that all the G-invariant Finsler metrics on G/H are Berwald. It suggests a new project in homogeneous Finsler geometry, i.e., to systematically study the homogeneous manifold G/H on which all the G-invariant Finsler metrics satisfy a certain geometric property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseevsky D V. Flag manifolds. Zb Rad, 1997, 6: 3–35

    MathSciNet  Google Scholar 

  2. Alekseevsky D V, Arvanitoyeorgos A. Riemannian flag manifolds with homogeneous geodesics. Trans Amer Math Soc, 2007, 359: 3769–3789

    Article  MathSciNet  Google Scholar 

  3. Alekseevsky D V, Nikonorov Y G. Compact Riemannian manifolds with homogeneous geodesics. SIGMA Symmetry Integrability Geom Methods Appl, 2009, 5: 093

    MathSciNet  Google Scholar 

  4. Bao D, Chern S S, Shen Z M. An Introduction to Riemann-Finsler Geometry. New York: Springer, 2000

    Book  Google Scholar 

  5. Berestovskii V N. Compact homogeneous manifolds with integrable invariant distributions, and scalar curvature. Sb Math, 1995, 186: 941–950

    Article  MathSciNet  Google Scholar 

  6. Berestovskii V N, Gorbatsevich V V. Homogeneous spaces with inner metric and with integrable invariant distributions. Anal Math Phys, 2014, 4: 263–331

    Article  MathSciNet  Google Scholar 

  7. Berestovskii V N, Nikonorov Y G. Riemannian Manifolds and Homogeneous Geodesics. Cham: Springer, 2020

    Book  Google Scholar 

  8. Berger M. Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive. Ann Scuola Norm Sup Pisa Cl Sci (3), 1961, 15: 179–246

    MathSciNet  Google Scholar 

  9. Chen Z Q, Wolf J A, Zhang S X. On the geodesic orbit property for Lorentz manifolds. J Geom Anal, 2022, 32: 81

    Article  MathSciNet  Google Scholar 

  10. Cohen N, Grama L, Negreiros C J C. Equigeodesics on flag manifolds. Houston J Math, 2011, 37: 113–125

    MathSciNet  Google Scholar 

  11. Deng S Q. Homogeneous Finsler Spaces. New York: Springer, 2012

    Book  Google Scholar 

  12. Deng S Q, Hou Z X. Naturally reductive homogeneous Finsler spaces. Manuscripta Math, 2010, 131: 215–229

    Article  MathSciNet  Google Scholar 

  13. Deng S Q, Xu M. Recent progress on homogeneous Finsler spaces with positive curvature. Eur J Math, 2017, 3: 974–999

    Article  MathSciNet  Google Scholar 

  14. Dušek Z, Kowalski O, Nikčević S Ž. New examples of Riemannian g.o. manifolds in dimension 7. Differential Geom Appl, 2004, 21: 65–78

    Article  MathSciNet  Google Scholar 

  15. Dynkin E B. Semisimple subalgebras of semisimple Lie algebras. Mat Sb, 1952, 30: 349–462

    MathSciNet  Google Scholar 

  16. Gordon C S. Homogeneous Riemannian manifolds whose geodesics are orbits. In: Topics in Geometry. In Memory of Joseph D’Atri. Boston: Birkhauser, 1996, 155–174

    Chapter  Google Scholar 

  17. Gordon C S, Nikonorov Y G. Geodesic orbit Riemannian structures on ℝn. J Geom Phys, 2018, 134: 235–243

    Article  MathSciNet  Google Scholar 

  18. Grama L, Negreiros C J C. Equigeodesics on generalized flag manifolds with two isotropy summands. Results Math, 2011, 60: 405–421

    Article  MathSciNet  Google Scholar 

  19. Helgason S. Differential Geometry, Lie Groups, and Symmetric Spaces. San Diego: Academic Press, 1978

    Google Scholar 

  20. Hsiang W C, Hsiang W Y. Differentiable actions of compact connected classical groups: II. Ann of Math (2), 1970, 92: 189–223

    Article  MathSciNet  Google Scholar 

  21. Huang L B. On the fundamental equations of homogeneous Finsler spaces. Differential Geom Appl, 2015, 40: 187–208

    Article  MathSciNet  Google Scholar 

  22. Huang L B. Ricci curvatures of left invariant Finsler metrics on Lie groups. Israel J Math, 2015, 207: 783–792

    Article  MathSciNet  Google Scholar 

  23. Kobayashi S, Nomizu K. Foundations of Differential Geometry. Volumes I and II. New York: Wiley-Interscience, 1969

    Google Scholar 

  24. Kowalski O, Vanhecke L. Riemannian-manifolds with homogeneous geodesics. Boll Unione Mat Ital, 1991, 7: 189–246

    MathSciNet  Google Scholar 

  25. Kramer M. Eine klassifikation bestimmter untergruppen kompakter zusammen-hängender liegruppen. Comm Algebra, 1975, 3: 691–737

    Article  MathSciNet  Google Scholar 

  26. Latifi D. Homogeneous geodesics in homogeneous Finsler spaces. J Geom Phys, 2007, 57: 1421–1433

    Article  MathSciNet  Google Scholar 

  27. Manturov O V. Homogeneous asymmetric Riemannian spaces with an irreducible group of motions. Dokl Akad Nauk SSSR, 1961, 141: 792–795

    MathSciNet  Google Scholar 

  28. Manturov O V. Riemannian spaces with orthogonal and symplectic motion groups and an irreducible rotation group. Dokl Akad Nauk SSSR, 1961, 141: 1034–1037

    MathSciNet  Google Scholar 

  29. Manturov O V. Homogeneous Riemannian spaces with an irreducible rotation group. Trudy Sem Vektor Tenzor Anal, 1966, 13: 68–145

    MathSciNet  Google Scholar 

  30. Montgomery D, Yang C T. The existence of a slice. Ann of Math (2), 1957, 65: 108–116

    Article  MathSciNet  Google Scholar 

  31. Nikolayevsky Y, Wolf J A. The structure of geodesic orbit Lorentz nilmanifolds. J Geom Anal, 2023, 33: 82

    Article  MathSciNet  Google Scholar 

  32. Nikonorov Y G. Geodesic orbit Riemannian metrics on spheres. Vladikavkaz Mat Zh, 2013, 15: 67–76

    MathSciNet  Google Scholar 

  33. Nikonorov Y G. On the structure of geodesic orbit Riemannian spaces. Ann Global Anal Geom, 2017, 52: 289–311

    Article  MathSciNet  Google Scholar 

  34. Shen Z M. Lectures on Finsler Geometry. Singapore: World Scientific, 2001

    Book  Google Scholar 

  35. Statha M. Equigeodesics on generalized flag manifolds with G2-type t-roots. Osaka J Math, 2020, 57: 871–888

    MathSciNet  Google Scholar 

  36. Tan J, Xu M. Randers and (α, β) equigeodesics for some compact homogeneous manifolds. arXiv:2209.00443, 2022

  37. Wang H C. Two-point homogeneous spaces. Ann of Math (2), 1952, 55: 177–192

    Article  MathSciNet  Google Scholar 

  38. Wang M, Ziller W. On isotropy irreducible Riemannian manifolds. Acta Math, 1991, 166: 223–261

    Article  MathSciNet  Google Scholar 

  39. Wang Y, Zhao G S. Equigeodesics on generalized flag manifolds with b2(G/K) = 1. Results Math, 2013, 64: 77–90

    Article  MathSciNet  Google Scholar 

  40. Wolf J A. The geometry and structure of isotropy irreducible homogeneous spaces. Acta Math, 1968, 120: 59–148. Correction, Acta Math, 1984, 152: 141–142

    Article  MathSciNet  Google Scholar 

  41. Xu M. Geodesic orbit spheres and constant curvature in Finsler geometry. Differential Geom Appl, 2018, 61: 197–206

    Article  MathSciNet  Google Scholar 

  42. Xu M. Geodesic orbit Finsler spaces with K ⩾ 0 and the (FP) condition. Adv Geom, 2021, 21: 551–564

    Article  MathSciNet  Google Scholar 

  43. Xu M. Submersion and homogeneous spray geometry. J Geom Anal, 2022, 32: 172

    Article  MathSciNet  Google Scholar 

  44. Xu M, Deng S Q, Huang L B, et al. Even-dimensional homogeneous Finsler spaces with positive flag curvature. Indiana Univ Math J, 2017, 66: 949–972

    Article  MathSciNet  Google Scholar 

  45. Xu M, Wolf J A. Killing vector fields of constant length on Riemannian normal homogeneous spaces. Transform Groups, 2016, 21: 871–902

    Article  MathSciNet  Google Scholar 

  46. Yan Z L, Deng S Q. Finsler spaces whose geodesics are orbits. Differential Geom Appl, 2014, 36: 1–23

    Article  MathSciNet  Google Scholar 

  47. Zhang L, Xu M. Standard homogeneous (α1,α2)-metrics and geodesic orbit property. Math Nachr, 2022, 295: 1443–1453

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 12131012, 12001007 and 11821101), Beijing Natural Science Foundation (Grant No. 1222003) and Natural Science Foundation of Anhui Province (Grant No. 1908085QA03). The authors sincerely thank Valerii Berestovskii, Huibin Chen, Zhiqi Chen, Shaoqiang Deng, Yurii Nikonorov, Zaili Yan, Fuhai Zhu and Wolfgang Ziller for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Tan, J. The symmetric space, strong isotropy irreducibility and equigeodesic properties. Sci. China Math. 67, 129–148 (2024). https://doi.org/10.1007/s11425-022-2090-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-022-2090-1

Keywords

MSC(2020)

Navigation