Skip to main content
Log in

Gaussian limit for determinantal point processes with J-Hermitian kernels

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We show that the central limit theorem for linear statistics over determinantal point processes with J-Hermitian kernels holds under fairly general conditions. In particular, we establish the Gaussian limit for linear statistics over determinantal point processes on the union of two copies of ℝd when the correlation kernels are J-Hermitian translation-invariant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basor E L. Distribution functions for random variables for ensembles of positive Hermitian matrices. Comm Math Phys, 1997, 188: 327–350

    Article  MathSciNet  MATH  Google Scholar 

  2. Basor E L, Widom H. Determinants of Airy operators and applications to random matrices. J Stat Phys, 1999, 96: 1–20

    Article  MathSciNet  MATH  Google Scholar 

  3. Borodin A. Determinantal point processes. In: Oxford Handbook of Random Matrix Theory. Oxford: Oxford University Press, 2011, 231–249

    Google Scholar 

  4. Borodin A, Okounkov A, Olshanski G. Asymptotics of Plancherel measures for symmetric groups. J Amer Math Soc, 2000, 13: 481–515

    Article  MathSciNet  MATH  Google Scholar 

  5. Borodin A, Olshanski G. Point processes and the infinite symmetric group. Math Res Lett, 1998, 5: 799–816

    Article  MathSciNet  MATH  Google Scholar 

  6. Borodin A, Olshanski G. Distributions on partitions, point processes, and the hypergeometric kernel. Comm Math Phys, 2000, 211: 335–358

    Article  MathSciNet  MATH  Google Scholar 

  7. Borodin A, Olshanski G. Random partitions and the gamma kernel. Adv Math, 2005, 194: 141–202

    Article  MathSciNet  MATH  Google Scholar 

  8. Borodin A, Olshanski G. Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes. Ann of Math (2), 2005, 161: 1319–1422

    Article  MathSciNet  MATH  Google Scholar 

  9. Bufetov A I, Qiu Y Q. J-Hermitian determinantal point processes: Balanced rigidity and balanced Palm equivalence. Math Ann, 2018, 371: 127–188

    Article  MathSciNet  MATH  Google Scholar 

  10. Costin O, Lebowitz J L. Gaussian fluctuation in random matrices. Phys Rev Lett, 1995, 75: 69–72

    Article  MathSciNet  Google Scholar 

  11. Daley D J, Vere-Jones D. An Introduction to the Theory of Point Processes, Volume II: General Theory and Structure, 2nd ed. New York: Springer, 2008

    Book  MATH  Google Scholar 

  12. Diaconis P, Evans S N. Linear functionals of eigenvalues of random matrices. Trans Amer Math Soc, 2001, 353: 2615–2633

    Article  MathSciNet  MATH  Google Scholar 

  13. Diaconis P, Shahshahani M. On the eigenvalues of random matrices. J Appl Probab, 1994, 31A: 49–62

    Article  MathSciNet  MATH  Google Scholar 

  14. Durrett R. Probability: Theory and Examples, 5th ed. Cambridge: Cambridge University Press, 2019

    Book  MATH  Google Scholar 

  15. Hough J B, Krishnapur M, Peres Y, et al. Zeros of Gaussian Analytic Functions and Determinantal Point Processes. Providence: Amer Math Soc, 2009

    Book  MATH  Google Scholar 

  16. Johansson K. On random matrices from the compact classical groups. Ann of Math (2), 1997, 145: 519–545

    Article  MathSciNet  MATH  Google Scholar 

  17. Johansson K. On fluctuations of eigenvalues of random Hermitian matrices. Duke Math J, 1998, 91: 151–204

    Article  MathSciNet  MATH  Google Scholar 

  18. Kondratiev Y G, Kuna T. Harmonic analysis on configuration space I: General theory. Infin Dimens Anal Quantum Probab Relat Top, 2002, 5: 201–233

    Article  MathSciNet  MATH  Google Scholar 

  19. Lenard A. Correlation functions and the uniqueness of the state in classical statistical mechanics. Comm Math Phys, 1973, 30: 35–44

    Article  MathSciNet  Google Scholar 

  20. Lukacs E. Characteristic Functions, 2nd ed. New York: Hafner, 1970

    MATH  Google Scholar 

  21. Lytvynov E. Determinantal point processes with J-Hermitian correlation kernels. Ann Probab, 2013, 41: 2513–2543

    Article  MathSciNet  MATH  Google Scholar 

  22. Macchi O. The coincidence approach to stochastic point processes. Adv in Appl Probab, 1975, 7: 83–122

    Article  MathSciNet  MATH  Google Scholar 

  23. Peres Y, Virág B. Zeros of the i.i.d. Gaussian power series: A conformally invariant determinantal process. Acta Math, 2005, 194: 1–35

    Article  MathSciNet  MATH  Google Scholar 

  24. Shirai T, Takahashi Y. Fermion process and Fredholm determinant. In: Proceedings of the Second ISAAC Congress. International Society for Analysis, Applications and Computation, vol. 7. Boston: Springer, 2000, 15–23

    MATH  Google Scholar 

  25. Simon B. Trace Ideals and Their Applications, 2nd ed. Providence: Amer Math Soc, 2005

    MATH  Google Scholar 

  26. Soshnikov A. The central limit theorem for local linear statistics in classical compact groups and related combinatorial identities. Ann Probab, 2000, 28: 1353–1370

    Article  MathSciNet  MATH  Google Scholar 

  27. Soshnikov A. Gaussian fluctuation for the number of particles in Airy, Bessel, sine, and other determinantal random point fields. J Stat Phys, 2000, 100: 491–522

    Article  MathSciNet  MATH  Google Scholar 

  28. Soshnikov A. Determinantal random point fields. Russian Math Surveys, 2000, 55: 923–975

    Article  MathSciNet  MATH  Google Scholar 

  29. Soshnikov A. Gaussian limit for determinantal random point fields. Ann Probab, 2002, 30: 171–187

    Article  MathSciNet  MATH  Google Scholar 

  30. Spohn H. Interacting Brownian particles: A study of Dyson’s model. In: Hydrodynamic Behavior and Interacting Particle Systems. The IMA Volumes in Mathematics and Its Applications, vol. 9. New York: Springer, 1987, 151–179

    MATH  Google Scholar 

  31. Su Z G. Random Matrices and Random Partitions: Normal Convergence. Hackensack: World Scientific, 2015

    Book  MATH  Google Scholar 

  32. Wieand K L. Eigenvalue distributions of random matrices in the permutation group and compact Lie groups. PhD Thesis. Cambridge: Harvard University, 1998

    Google Scholar 

Download references

Acknowledgements

Yanqi Qiu was supported by National Natural Science Foundation of China (Grant Nos. Y7116335K1, 11801547 and 11688101). Kai Wang was supported by National Natural Science Foundation of China (Grant Nos. 11722102 and 12026250), Shanghai Technology Innovation Project (Grant No. 21JC1400800) and Laboratory of Mathematics for Nonlinear Science, Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Qiu, Y. & Wang, K. Gaussian limit for determinantal point processes with J-Hermitian kernels. Sci. China Math. 66, 1359–1374 (2023). https://doi.org/10.1007/s11425-021-1977-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-1977-x

Keywords

MSC(2020)

Navigation