Skip to main content
Log in

Primal-dual algorithms for total variation based image restoration under Poisson noise

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We consider the problem of restoring images corrupted by Poisson noise. Under the framework of maximum a posteriori estimator, the problem can be converted into a minimization problem where the objective function is composed of a Kullback-Leibler (KL)-divergence term for the Poisson noise and a total variation (TV) regularization term. Due to the logarithm function in the KL-divergence term, the non-differentiability of TV term and the positivity constraint on the images, it is not easy to design stable and efficiency algorithm for the problem. Recently, many researchers proposed to solve the problem by alternating direction method of multipliers (ADMM). Since the approach introduces some auxiliary variables and requires the solution of some linear systems, the iterative procedure can be complicated. Here we formulate the problem as two new constrained minimax problems and solve them by Chambolle-Pock’s first order primal-dual approach. The convergence of our approach is guaranteed by their theory. Comparing with ADMM approaches, our approach requires about half of the auxiliary variables and is matrix-inversion free. Numerical results show that our proposed algorithms are efficient and outperform the ADMM approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrew H, Hunt B. Digital Image Restoration. Englewood Cliffs: Prentice-Hall, 1977

  2. Bardsley J, Goldes J. Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation. Inverse Probl, 2009, 25: 095005

    Article  MathSciNet  Google Scholar 

  3. Bardsley J, Goldes J. An iterative method for edge-preserving MAP estimation when data-noise is Poisson. SIAM J Sci Comput, 2010, 32: 171–185

    Article  MATH  MathSciNet  Google Scholar 

  4. Bertero M, Boccacci P, Desiderà G, et al. Image deblurring with poisson data: From cells to galaxies. Inverse Probl, 2009, 25: 123006

    Article  Google Scholar 

  5. Bertsekas D. Convex Optimization Theory. Belmont: Athena Scientific, 2009

  6. Blomgren P, Chan T. Color TV: Total variation methods for restoration of vector-valued images. IEEE Trans Image Process, 1998, 7: 304–309

    Article  Google Scholar 

  7. Bovik A. Handbook of image and video processing. New York: Academic Press, 2010

  8. Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn, 2011, 3: 1–122

    Article  Google Scholar 

  9. Brune C, Sawatzky A, Burger M. Bregman-EM-TV methods with application to optical nanoscopy. In: Scale Space and Variational Methods in Computer Vision. New York: Springer, 2009, 235–246

    Chapter  Google Scholar 

  10. Brune C, Sawatzky A, Burger M. Primal and dual Bregman methods with application to optical nanoscopy. Internat J Comput Vision, 2011, 92: 211–229

    Article  MATH  MathSciNet  Google Scholar 

  11. Chambolle A. An algorithm for total variation minimization and applications. J Math Imaging Vision, 2004, 20: 89–97

    Article  MathSciNet  Google Scholar 

  12. Chambolle A, Pock T. A first-order primal-dual algorithm for convex problems with applications to imaging. J Math Imaging Vision, 2011, 40: 120–145

    Article  MATH  MathSciNet  Google Scholar 

  13. Chan R, Yang H, Zeng T. A two-stage image segmentation method for blurry images with poisson or multiplicative gamma noise. SIAM J Imaging Sci, 2014, 7: 98–127

    Article  MATH  MathSciNet  Google Scholar 

  14. Chan R, Chen K. Multilevel algorithm for a Poisson noise removal model with total-variation regularization. Int J Comput Math, 2007, 84: 1183–1198

    Article  MATH  MathSciNet  Google Scholar 

  15. Chen G, Teboulle M. A proximal-based decomposition method for convex minimization problems. Math Program Ser A, 1994, 64: 81–101

    Article  MATH  MathSciNet  Google Scholar 

  16. Combettes P, Pesquet J. A proximal decomposition method for solving convex variational inverse problems. Inverse Problems, 2008, 24: 065014

    Article  MathSciNet  Google Scholar 

  17. Dupe F, Fadili J, Starck J. A proximal iteration for deconvolving poisson noisy images using sparse representations. IEEE Trans Image Process, 2009, 18: 310–321

    Article  MathSciNet  Google Scholar 

  18. Eckstein J, Bertsekas D. On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math Program Ser A, 1992, 55: 293–318

    Article  MATH  MathSciNet  Google Scholar 

  19. Fessler J, Booth S. Conjugate-gradient preconditioning methods for shift-variant pet image reconstruction. Image Process IEEE Trans, 1999, 8: 688–699

    Article  MATH  MathSciNet  Google Scholar 

  20. Fessler J, Lee S, Olafsson V, et al. Toeplitz-based iterative image reconstruction for mri with correction for magnetic field inhomogeneity. Signal Process IEEE Trans, 2005, 53: 3393–3402

    Article  MathSciNet  Google Scholar 

  21. Figueiredo M, Bioucas-Dias J. Restoration of Poissonian images using alternating direction optimization. IEEE Trans Image Process, 2010, 19: 3133–3145

    Article  MathSciNet  Google Scholar 

  22. Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput Math Appl, 1976, 2: 17–40

    Article  MATH  Google Scholar 

  23. Goldstein T, Osher S. The split Bregman method for L1 regularized problems. SIAM J Imaging Sci, 2009, 2: 323–343

    Article  MATH  MathSciNet  Google Scholar 

  24. Hansen P. Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. Philadelphia: SIAM, 1998

  25. He B, Yuan X. On the o(1/n) convergence rate of the Douglas-Rachford alternating direction method. SIAM J Numer Anal, 2012, 50: 700–709

    Article  MATH  MathSciNet  Google Scholar 

  26. Le T, Chartrand R, Asaki T J. A variational approach to reconstructing images corrupted by Poisson noise. J Math Imaging Vision, 2007, 27: 257–263

    Article  MathSciNet  Google Scholar 

  27. Lucy L. An iterative technique for the rectification of observed distributions. Astron J, 1974, 79: 745–754

    Article  Google Scholar 

  28. Murtagh F, Starck J. Astronomical Image and Data Analysis. New York: Springer, 2006

  29. Ng M, Chan R, Tang W. A fast algorithm for deblurring models with Neumann boundary conditions. SIAM J Sci Comput, 1999, 21: 851–866

    Article  MATH  MathSciNet  Google Scholar 

  30. Puetter R, Gosnell T, Yahil A. Digital image reconstruction: Deblurring and denoising. Annu Rev Astron Astrophys, 2005, 43: 139–194

    Article  Google Scholar 

  31. Richarson W. Bayesian-based iterative method of image restoration. J Opt Soc Amer A, 1972, 62: 55–59

    Article  Google Scholar 

  32. Rockafellar R. Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math Oper Res, 1976, 1: 97–116

    Article  MATH  MathSciNet  Google Scholar 

  33. Rockafellar R. Monotone operators and the proximal point algorithm. SIAM J Control Optim, 1976, 14: 877–898

    Article  MATH  MathSciNet  Google Scholar 

  34. Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D, 1992, 60: 259–268

    Article  MATH  Google Scholar 

  35. Setzer S, Steidl G, Teuber T. Deblurring Poissonian images by split Bregman techniques. J Vis Comm Image Represent, 2010, 21: 193–199

    Article  Google Scholar 

  36. Setzer S, Steidl G, Teuber T. Infimal convolution regularizations with discrete l1-type functionals. Comm Math Sci, 2011, 9: 797–872

    Article  MATH  MathSciNet  Google Scholar 

  37. Snyder D, Hammoud A, White R. Image recovery from data acquired with a charge-coupled-device camera. JOSA A, 1993, 10: 1014–1023

    Article  Google Scholar 

  38. Tai X, Wu C. Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model. In: Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 5567. New York: Springer, 2009, 502–513

    Chapter  Google Scholar 

  39. Timmermann K, Nowak R. Multiscale modeling and estimation of Poisson processes with application to photon-limited imaging. IEEE Trans Inform Theory, 1999, 45: 846–862

    Article  MATH  MathSciNet  Google Scholar 

  40. Tseng P. Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J Control Optim, 1991, 29: 119–138

    Article  MATH  MathSciNet  Google Scholar 

  41. Wernick M, Aarsvold J. Emission Tomography: The Fundamentals of PET and SPECT. New York: Academic Press, 2004

  42. Willett R, Nowak R. Platelets: A multiscale approach for recovering edges and surfaces in photon-limited medical imaging. IEEE Trans Medical Imaging, 2003, 22: 332–350

    Article  Google Scholar 

  43. Yin W, Osher S, Goldfarb D, et al. Bregman iterative algorithms for ℓ1-minimization with applications to compressed sensing. SIAM J Imaging Sci, 2008, 1: 143–168

    Article  MATH  MathSciNet  Google Scholar 

  44. Zanella R, Boccacci P, Zanni L, et al. Efficient gradient projection methods for edge-preserving removal of Poisson noise. Inverse Problems, 2009, 25: 045010

    Article  MathSciNet  Google Scholar 

  45. Zhou W, Bovik A, Sheikh H, et al. Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process, 2004, 13: 600–612

    Article  Google Scholar 

  46. Zhu M. Fast Numerical Algorithms for Total Variation Based Image Restoration. PhD thesis. Los Angeles: University of California, 2008

  47. Zhu M, Chan T. An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA CAM Report, 2007, 08–34

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YouWei Wen.

Additional information

Dedicated to Professor Lin Qun on the Occasion of his 80th Birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Y., Chan, R.H. & Zeng, T. Primal-dual algorithms for total variation based image restoration under Poisson noise. Sci. China Math. 59, 141–160 (2016). https://doi.org/10.1007/s11425-015-5079-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-015-5079-0

Keywords

MSC(2010)

Navigation