Skip to main content
Log in

Minimum secondary aberration fractional factorial split-plot designs in terms of consulting designs

  • Published:
Science in China Series A Aims and scope Submit manuscript

Abstract

It is very powerful for constructing nearly saturated factorial designs to characterize fractional factorial (FF) designs through their consulting designs when the consulting designs are small. Mukerjee and Fang employed the projective geometry theory to find the secondary wordlength pattern of a regular symmetrical fractional factorial split-plot (FFSP) design in terms of its complementary subset, but not in a unified form. In this paper, based on the connection between factorial design theory and coding theory, we obtain some general and unified combinatorial identities that relate the secondary wordlength pattern of a regular symmetrical or mixed-level FFSP design to that of its consulting design. According to these identities, we further establish some general and unified rules for identifying minimum secondary aberration, symmetrical or mixed-level, FFSP designs through their consulting designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fries, A., Hunter, W. G., Minimum aberration 2k-p designs, Technometrics, 1980, 26: 225–232.

    MathSciNet  Google Scholar 

  2. Chen, J., Sun, D. X., Wu, C. F. J., A catalogue of two-level and three-level fractional factorial designs with small runs, Internat. Statist. Rev., 1993, 61(1): 131–145.

    Google Scholar 

  3. Tang, B., Wu, C. F. J., Characterization of minimum aberration 2n-k designs in terms of their complementary designs, Ann. Statist., 1996, 25: 1176–1188.

    MathSciNet  Google Scholar 

  4. Suen, C. Y., Chen, H., Wu, C. F. J., Some identities on q n-m designs with application to minimum aberrations, Ann. Statist., 1997, 25(3): 1176–1188.

    MathSciNet  Google Scholar 

  5. Wu, C. F. J., Zhang, R. C., Minimum aberration designs with two-level and four-level factors, Biometrika, 1993, 80(1): 203–209.

    MathSciNet  Google Scholar 

  6. Wu, C. F. J., Zhang, R. C., Wang, R. G., Construction of asymmetrical orthogonal arrays of the type OA \((s^k , (s^{r_1 } )^{n_1 } \cdots (s^{r_t } )^{n_t } )\), Statist. Sinica, 1992, 2: 203–219.

    MathSciNet  Google Scholar 

  7. Zhang, R. C., Shao, Q., Minimum aberration (s 2)s n-k designs, Statist. Sinica, 2001, 11: 213–223.

    MathSciNet  Google Scholar 

  8. Mukerjee, R., Wu, C. F. J., Minimum aberration designs for mixed Factorials in terms of complementary sets, Statist. Sinica, 2001, 11: 225–239.

    MathSciNet  Google Scholar 

  9. Ai, M. Y., Zhang, R. C., Characterization of minimum aberration mixed factorials in terms of consulting designs, Statist. Papers, 2004, 46(2): 157–171.

    MathSciNet  Google Scholar 

  10. Chen, H., Cheng, C. S., Theory of optimal blocking of 2n-m designs, Ann. Statist., 1999, 27(6): 1948–1973.

    MathSciNet  Google Scholar 

  11. Zhang, R. C., Park, D. K., Optimal blocking of two-level fractional factorial designs, J. Statist. Plann. Infer., 2000, 91: 107–121.

    MathSciNet  Google Scholar 

  12. Ai, M. Y., Zhang, R. C., Theory of minimum aberration blocked regular mixed factorial designs, J. Statist. Plann. Infer., 2004, 126(1): 305–323.

    MathSciNet  Google Scholar 

  13. Ai, M. Y., Zhang, R. C., Theory of optimal blocking of nonregular factorial designs, Canad. J. Statist., 2004, 32(1): 57–72.

    MathSciNet  Google Scholar 

  14. Box, G. E. P., Jones, S., Split-plot designs for robust product experimentation, J. Appl. Statist., 1992, 19: 3–26.

    Google Scholar 

  15. Bingham, D., Sitter, R. R., Minimum aberration two-level fractional factorial split-plot designs, Technometrics, 1999, 41(1): 62–70.

    MathSciNet  Google Scholar 

  16. Bingham, D., Sitter, R. R., Some theoretical results for fractional factorial split-plot designs, Ann. Statist., 1999, 27(4): 1240–1255.

    MathSciNet  Google Scholar 

  17. Ai, M. Y., Zhang, R. C., Multistratum fractional factorial split-plot designs with minimum aberration and maximum estimation capacity, Statist. Probab. Letters, 2004, 69(2): 161–170.

    MathSciNet  Google Scholar 

  18. Ai, M. Y., He, S. Y., Theory of optimal blocking for fractional factorial split-plot designs, Sci. China, Ser. A. 2005, 48(5): 649–656.

    Article  MathSciNet  Google Scholar 

  19. Bingham, D., Sitter, R. R., Design issues in fractional factorial split-plot experiments, J. Quality Technology, 2001, 33(1): 2–15.

    Google Scholar 

  20. Mukerjee, R., Fang, K. T., Fractional factorial split-plot designs with minimum aberration and maximum estimation capacity, Statist. Sinica, 2002, 12: 885–903.

    MathSciNet  Google Scholar 

  21. MacWilliams, T. J., Sloane, N. J. A., The Theory of Error-Correcting Codes, Amsterdam: North-Holland, 1977.

    Google Scholar 

  22. Roman, S., Coding and Information Theory, New York: Springer, 1992.

    Google Scholar 

  23. Peterson, W. W., Weldon, E. J., Error-Correcting Codes, Cambridge: MIT Press, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ai, M., Zhang, R. Minimum secondary aberration fractional factorial split-plot designs in terms of consulting designs. SCI CHINA SER A 49, 494–512 (2006). https://doi.org/10.1007/s11425-006-0494-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-006-0494-x

Keywords

Navigation