Skip to main content
Log in

A Deep Learning Method for Computing Eigenvalues of the Fractional Schrödinger Operator

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

The authors present a novel deep learning method for computing eigenvalues of the fractional Schrödinger operator. The proposed approach combines a newly developed loss function with an innovative neural network architecture that incorporates prior knowledge of the problem. These improvements enable the proposed method to handle both high-dimensional problems and problems posed on irregular bounded domains. The authors successfully compute up to the first 30 eigenvalues for various fractional Schrödinger operators. As an application, the authors share a conjecture to the fractional order isospectral problem that has not yet been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Metzler R and Klafter J, The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Physics Reports, 2000, 339(1): 1–77.

    MathSciNet  Google Scholar 

  2. Shlesinger M F, West B J, and Klafter J, Lévy dynamics of enhanced diffusion: Application to turbulence, Physical Review Letters, 1987, 58(11): 1100–1103.

    MathSciNet  Google Scholar 

  3. de Pablo A, Quirós F, Rodríguez A, et al., A fractional porous medium equation, Advances in Mathematics, 2011, 226(2): 1378–1409.

    MathSciNet  Google Scholar 

  4. Laskin N, Fractional quantum mechanics and Lévy path integrals, Physics Letters A, 2000, 268(4–6): 298–305.

    MathSciNet  Google Scholar 

  5. Laskin N, Fractional Schrödinger equation, Physical Review E, 2002, 66(5): 056108.

    MathSciNet  Google Scholar 

  6. Longhi S, Fractional Schrödinger equation in optics, Optics Letters, 2015, 40(6): 1117–1120.

    Google Scholar 

  7. Zhang Y, Zhong H, Belić M R, et al., PT symmetry in a fractional Schrödinger equation, Laser & Photonics Reviews, 2016, 10(3): 526–531.

    Google Scholar 

  8. Ainsworth M and Glusa C, Aspects of an adaptive finite element method for the fractional Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver, Computer Methods in Applied Mechanics and Engineering, 2017, 327: 4–35.

    MathSciNet  Google Scholar 

  9. Ainsworth M and Glusa C, Towards an efficient finite element method for the integral fractional Laplacian on polygonal domains, Contemporary Computational Mathematics — A Celebration of the 80th Birthday of Ian Sloan, Eds. by Dick J, Kuo F Y, and Woźniakowski H, Springer, Cham, 2018.

    Google Scholar 

  10. Del Teso F, Endal J, and Jakobsen E R, Robust numerical methods for nonlocal (and local) equations of porous medium type, Part II: Schemes and experiments, SIAM Journal on Numerical Analysis, 2018, 56(6): 3611–3647.

    MathSciNet  Google Scholar 

  11. Mao Z, Chen S, and Shen J, Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations, Applied Numerical Mathematics, 2016, 106: 165–181.

    MathSciNet  Google Scholar 

  12. Kyprianou A E, Osojnik A, and Shardlow T, Unbiased ‘walk-on-spheres’ Monte Carlo methods for the fractional Laplacian, IMA Journal of Numerical Analysis, 2018, 38(3): 1550–1578.

    MathSciNet  Google Scholar 

  13. Shardlow T, A walk outside spheres for the fractional Laplacian: Fields and first eigenvalue, Mathematics of Computation, 2019, 88(320): 2767–2792.

    MathSciNet  Google Scholar 

  14. D’Elia M, Du Q, Glusa C, et al., Numerical methods for nonlocal and fractional models, Acta Numerica, 2020, 29: 1–124.

    MathSciNet  Google Scholar 

  15. Lischke A, Pang G, Gulian M, et al., What is the fractional Laplacian? A comparative review with new results, Journal of Computational Physics, 2020, 404: 109009.

    MathSciNet  Google Scholar 

  16. Bonito A, Borthagaray J P, Nochetto R H, et al., Numerical methods for fractional diffusion, Computing and Visualization in Science, 2018, 19: 19–46.

    MathSciNet  Google Scholar 

  17. Dyda B, Kuznetsov A, and Kwaśnicki M, Eigenvalues of the fractional Laplace operator in the unit ball, Journal of the London Mathematical Society, 2017, 95(2): 500–518.

    MathSciNet  Google Scholar 

  18. Dyda B, Fractional calculus for power functions and eigenvalues of the fractional Laplacian, Fractional Calculus and Applied Analysis, 2012, 15(4): 536–555.

    MathSciNet  Google Scholar 

  19. Bao W, Chen L, Jiang X, et al., A Jacobi spectral method for computing eigenvalue gaps and their distribution statistics of the fractional Schrödinger operator, Journal of Computational Physics, 2020, 421: 109733.

    MathSciNet  Google Scholar 

  20. Borthagaray J P, Del Pezzo L M, and Martínez S, Finite element approximation for the fractional eigenvalue problem, Journal of Scientific Computing, 2018, 77(1): 308–329.

    MathSciNet  Google Scholar 

  21. Samardzija N and Waterland R L, A neural network for computing eigenvectors and eigenvalues, Biological Cybernetics, 1991, 65(4): 211–214.

    MathSciNet  Google Scholar 

  22. Cichocki A and Unbehauen R, Neural networks for computing eigenvalues and eigenvectors, Biological Cybernetics, 1992, 68: 155–164.

    Google Scholar 

  23. Carleo G and Troyer M, Solving the quantum many-body problem with artificial neural networks, Science, 2017, 355(6325): 602–606.

    MathSciNet  Google Scholar 

  24. Choo K, Mezzacapo A, and Carleo G, Fermionic neural-network states for ab-initio electronic structure, Nature Communications, 2020, 11(1): 2368.

    Google Scholar 

  25. Han J, Zhang L, and E W, Solving many-electron Schrödinger equation using deep neural networks, Journal of Computational Physics, 2019, 399: 108929.

    MathSciNet  Google Scholar 

  26. Han J, Lu J, and Zhou M, Solving high-dimensional eigenvalue problems using deep neural networks: A diffusion Monte Carlo like approach, Journal of Computational Physics, 2020, 423: 109792.

    MathSciNet  Google Scholar 

  27. Li H and Ying L, A semigroup method for high dimensional elliptic PDEs and eigenvalue problems based on neural networks, Journal of Computational Physics, 2022, 453: 110939.

    MathSciNet  Google Scholar 

  28. Zhang W, Li T, and Schütte C, Solving eigenvalue PDEs of metastable diffusion processes using artificial neural networks, Journal of Computational Physics, 2022, 465: 111377.

    MathSciNet  Google Scholar 

  29. Elhamod M, Bu J, Singh C, et al., CoPhy-PGNN: Learning physics-guided neural networks with competing loss functions for solving eigenvalue problems, ACM Transactions on Intelligent Systems and Technology, 2022, 13(6): 1–23.

    Google Scholar 

  30. Finol D, Lu Y, Mahadevan V, et al., Deep convolutional neural networks for eigenvalue problems in mechanics, International Journal for Numerical Methods in Engineering, 2019, 118(5): 258–275.

    MathSciNet  Google Scholar 

  31. Lu J and Lu Y, A priori generalization error analysis of two-layer neural networks for solving high dimensional Schrödinger eigenvalue problems, Communications of the American Mathematical Society, 2022, 2(1): 1–21.

    MathSciNet  Google Scholar 

  32. Kwaśnicki M, Ten equivalent definitions of the fractional Laplace operator, Fractional Calculus and Applied Analysis, 2017, 20(1): 7–51.

    MathSciNet  Google Scholar 

  33. Valdinoci E, From the long jump random walk to the fractional Laplacian, Bulletin of the Spanish Society of Applied Mathematics, 2009, 49: 33–44.

    MathSciNet  Google Scholar 

  34. Frank R L, Eigenvalue bounds for the fractional Laplacian: A review, Recent Developments in Nonlocal Theory, Eds. by Palatucci G and Kuusi T, Walter de Gruyter, Berlin, 2017, 210–235.

    Google Scholar 

  35. Chen Z Q and Song R, Two-sided eigenvalue estimates for subordinate processes in domains, Journal of Functional Analysis, 2005, 226(1): 90–113.

    MathSciNet  Google Scholar 

  36. Bao W, Ruan X, Shen J, et al., Fundamental gaps of the fractional Schrödinger operator, Communications in Mathematical Sciences, 2019, 17(2): 447–471.

    MathSciNet  Google Scholar 

  37. Grubb G, Fractional Laplacians on domains, a development of Hörmander’s theory of μ-transmission pseudodifferential operators, Advances in Mathematics, 2015, 268: 478–528.

    MathSciNet  Google Scholar 

  38. Khoo Y, Lu J, and Ying L. Solving for high-dimensional committor functions using artificial neural networks, Research in the Mathematical Sciences, 2019, 6: 1–13.

    MathSciNet  Google Scholar 

  39. Liu X and Oishi S, Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape, SIAM Journal on Numerical Analysis, 2013, 51(3): 1634–1654.

    MathSciNet  Google Scholar 

  40. Yuan Q and He Z, Bounds to eigenvalues of the Laplacian on L-shaped domain by variational methods, Journal of Computational and Applied Mathematics, 2009, 233(4): 1083–1090.

    MathSciNet  Google Scholar 

  41. Kac M, Can one hear the shape of a drum? The American Mathematical Monthly, 1966, 73(492): 1–33.

    MathSciNet  Google Scholar 

  42. Gordon C, Webb D L, and Wolpert S, One cannot hear the shape of a drum, Bulletin of the American Mathematical Society, 1992, 27(1): 134–138.

    MathSciNet  Google Scholar 

  43. Gordon C, Webb D L, and Wolpert S, Isospectral plane domains and surfaces via Riemannian orbifolds, Inventiones Mathematicae, 1992, 110(1): 1–22.

    MathSciNet  Google Scholar 

  44. Driscoll T A, Eigenmodes of isospectral drums, SIAM Review, 1997, 39(1): 1–17.

    MathSciNet  Google Scholar 

  45. Borzì A and Borzì G, Algebraic multigrid methods for solving generalized eigenvalue problems, International Journal for Numerical Methods in Engineering, 2006, 65(8): 1186–1196.

    MathSciNet  Google Scholar 

  46. Li H and Zhang Z, Efficient spectral and spectral element methods for eigenvalue problems of Schrödinger equations with an inverse square potential, SIAM Journal on Scientific Computing, 2017, 39(1): A114–A140.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingbing Ming.

Ethics declarations

The authors declare no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China under Grant Nos. 12371438 and 12326336.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Ming, P. A Deep Learning Method for Computing Eigenvalues of the Fractional Schrödinger Operator. J Syst Sci Complex 37, 391–412 (2024). https://doi.org/10.1007/s11424-024-3250-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-024-3250-9

Keywords

Navigation