Skip to main content
Log in

Biological Systems: Reliable Functions out of Randomness

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

What makes biological systems different from man-made systems? One distinction is explored in this paper: Biological systems achieve reliable functions through randomness, i.e., by both mitigating and exploiting the effects of randomness. The fundamental reason for biological systems to take such a random approach is the randomness of the microscopic world, which is dramatically different from the macroscopic world we are familiar with. To substantiate the idea, bacterial chemotaxis is used as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Xie L L and Guo L, How much uncertainty can be dealt with by feedback? IEEE Trans. Automatic Control, 2000, 45(12): 2203–2217.

    Article  MathSciNet  Google Scholar 

  2. Xie L L and Guo L, Fundamental limitations of discrete-time adaptive nonlinear control, IEEE Trans. Automatic Control, 1999, 44(9): 1777–1782.

    Article  MathSciNet  Google Scholar 

  3. Phillips R, Kondev J, Theriot J, et al., Physical Biology of the Cell, 2nd Edition, CRC Press, Boca Raton, State of Florida, 2013.

    Google Scholar 

  4. Matzinger P, The danger model: A renewed sense of self, Science, 2002, 296(5566): 301–305.

    Article  Google Scholar 

  5. Pradeu T, The Limits of the Self: Immunology and Biological Identity, Oxford University Press, Oxford, 2012.

    Book  Google Scholar 

  6. Eberl G, Immunity by equilibrium, Nature Reviews Immunology, 2016, 16: 524–532.

    Article  Google Scholar 

  7. Kaufmann S H E, Immunology’s coming of age, Frontiers in Immunology, 2019, 10: Article 684, 1–13.

    Article  Google Scholar 

  8. Holland J H, Emergence: From Chaos to Order, Oxford University Press, Oxford, 1998.

    MATH  Google Scholar 

  9. Adler J, My life with nature, Annual Review of Biochemistry, 2011, 80: 42–70.

    Article  Google Scholar 

  10. Colin R and Sourjik V, Emergent properties of bacterial chemotaxis pathway, Current Opinion in Microbiology, 2017, 39: 24–33.

    Article  Google Scholar 

  11. Alon U, Surette M G, Barkai N, et al., Robustness in bacterial chemotaxis, Nature, 1999, 397(6715): 168–171.

    Article  Google Scholar 

  12. Yi T M, Huang Y, Simon M I, et al., Robust perfect adaptation in bacterial chemotaxis through integral feedback control, Proc. Natl. Acad. Sci. USA, 2000, 97(9): 4649–4653.

    Article  Google Scholar 

  13. Vladimirov N and Sourjik V, Chemotaxis: How bacteria use memory, Biological Chemistry, 2009, 390: 1097–1104.

    Article  Google Scholar 

  14. Clausznitzer D, Oleksiuk O, Løvdok L, et al., Chemotactic response and adaptation dynamics in Escherichia coli, PLoS Computational Biology, 2010, 6(5): e1000784.

    Article  MathSciNet  Google Scholar 

  15. Edgington M P and Tindall M J, Mathematical analysis of the Escherichia coli chemotaxis signalling pathway, Bulletin of Mathematical Biology, 2018, 80: 758–787.

    Article  MathSciNet  Google Scholar 

  16. Tindall M J, Porter S L, Maini P K, et al., Overview of mathematical approaches used to model bacterial chemotaxis I: The single cell, Bulletin of Mathematical Biology, 2008, 70(6): 1525–1569.

    Article  MathSciNet  Google Scholar 

  17. Tindall M J, Maini P K, Porter S L, et al., Overview of mathematical approaches used to model bacterial chemotaxis II: Bacterial populations, Bulletin of Mathematical Biology, 2008, 70(6): 1570–1607.

    Article  MathSciNet  Google Scholar 

  18. Park J and Aminzare Z, A mathematical description of bacterial chemotaxis in response to two stimuli, arXiv: 2006.00688v1, 2020.

  19. Berg H C and Brown D A, Chemotaxis in Escherichia coli analysed by three-dimensional tracking, Nature, 1972, 239: 500–504.

    Article  Google Scholar 

  20. Alon U, An Introduction to Systems Biology: Design Principles of Biological Circuits, 2nd Edition, CRC Press, Boca Raton, State of Florida, 2019.

    Book  Google Scholar 

  21. Tu Y, Quantitative modeling of bacterial chemotaxis: signal amplification and accurate adaptation, Annual Review of Biophysics, 2013, 42: 337–359.

    Article  Google Scholar 

  22. Tu Y, Shimizu T S, and Berg H C, Modeling the chemotactic response of Escherichia coli to time-varying stimuli, Proc Natl Acad Sci USA, 2008, 105(39): 14855–14860.

    Article  Google Scholar 

  23. Cluzel P, Surette M, and Leibler S, An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells, Science, 2000, 287: 1652–1655.

    Article  Google Scholar 

  24. Dawkins R, The Blind Watchmaker, W. W. Norton & Company, New York, 2019.

    Google Scholar 

  25. Capra E J and Laub M T, The evolution of two-component signal transduction systems, Annual Review of Microbiology, 2012, 66: 325–347.

    Article  Google Scholar 

  26. Nicholson D, Is the cell really a machine? Journal of Theoretical Biology, 2019, 477: 108–126.

    Article  MathSciNet  Google Scholar 

  27. Li M and Hazelbauer G L, Cellular stoichiometry of the components of the chemotaxis signaling complex, Journal of Bacteriology, 2004, 186(12): 3687–3694.

    Article  Google Scholar 

  28. Maddock J R and Shapiro L, Polar location of the chemoreceptor complex in the Escherichia coli cell, Science, 1993, 259(5102): 1717–1723.

    Article  Google Scholar 

  29. Bray D, Levin M D, and Morton-Firth C J, Receptor clustering as a cellular mechanism to control sensitivity, Nature, 1998, 393: 85–88.

    Article  Google Scholar 

  30. Walsh C T, Posttranslational Modification of Proteins: Expanding Nature’s Inventory, Roberts and Co. Publishers, Greenwood Village, CO, USA, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Liang Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, LL. Biological Systems: Reliable Functions out of Randomness. J Syst Sci Complex 34, 2036–2047 (2021). https://doi.org/10.1007/s11424-021-1271-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-021-1271-1

Keywords

Navigation