Skip to main content
Log in

The Exponential Stabilization of Uncertain Chained Form Systems of Mobile Robots Based on Visual Servoing

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

A system for a type of nonholonomic wheeled mobile robots equipped with an uncalibrated camera fixed to the ceiling is investigated. Based on the visual feedback and the state-input transformation, models of uncertain chained form systems are presented for the robot-camera systems. Then, new smooth time-varying feedback controllers are proposed to exponentially stabilize the uncertain chained system by using state-scaling and control theories for two cases. The exponential stabilities of the closed-loop uncertain systems are rigorously proved. Simulation results demonstrate the effectiveness of the proposed strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campion G, Bastin G, and D’Andréa-Novel B, Structural properties and classification of kinematic and dynamic models of wheeled mobile robots, IEEE Transactions on Robotics and Automation, 1996, 12(1): 47–62.

    Article  Google Scholar 

  2. Kolmanovsky I and McClamroch N H, Developments in nonholonomic control problems, IEEE Control System Magazine, 1995, 15(6): 20–36.

    Article  Google Scholar 

  3. Wang C L, Semiglobal practical stabilization of nonholonomic wheeled mobile robots with saturated inputs, Automatica, 2008, 44(3): 816–822.

    Article  MathSciNet  MATH  Google Scholar 

  4. Hu Y M, Ge S S, and Su C Y, Stabilization of uncertain nonholonomic systems via time-varying sliding mode control, IEEE Transactions on Automatic Control, 2004, 49(5): 757–763.

    Article  MathSciNet  Google Scholar 

  5. Hong Y G, Wang J K, and Xi Z R, Stabilization of uncertain chained form systems within finite settling time, IEEE Transactions on Automatic Control, 2005, 50(9): 1379–1384.

    Article  MathSciNet  Google Scholar 

  6. Astolfi A, Discontinuous control ofnonholonomic systems, Systems and Control Letters, 1996, 27(1): 37–45.

    Article  MathSciNet  MATH  Google Scholar 

  7. Ma B L and Tso S K, Robust discontinuous exponential regulation of dynamic nonholonomic wheeled mobile robots with parameter uncertainties, International Journal of Robust Nonlinear Control, 2008, 18(9): 960–974.

    Article  MathSciNet  MATH  Google Scholar 

  8. Tian Y P and Li S H, Exponential stabilization of nonholonomic dynamic systems by smooth time-varying control, Automatica, 2002, 38(7): 1139–1146.

    Article  MathSciNet  MATH  Google Scholar 

  9. Li S H and Tian Y P, Smooth time-varying exponential stabilization of nonholonomic Systems in the vector power form, Control Theory and Applications, 2001, 18(3): 317–322.

    MathSciNet  MATH  Google Scholar 

  10. Ma B L and Huo W, Smooth time-varying exponential stabilization of nonholonomic chained systems, Acta Automatic Sinica, 2003, 29(2): 301–305.

    MathSciNet  Google Scholar 

  11. Jiang Z P, Robust exponential regulation of nonholonomic systems with uncertainties, Automatica, 2000, 36(2): 189–209.

    Article  MathSciNet  MATH  Google Scholar 

  12. Xi Z R, Feng G, Jiang Z P, and Cheng D Z, A switching algorithm for global exponential stabilization of uncertain chained systems, IEEE Transactions on Automatic Control, 2003, 48(10): 1793–1798.

    Article  MathSciNet  Google Scholar 

  13. Lee T C, Exponential stabilization for nonlinear systems with applications to nonholonomic systems, Automatica, 2003, 39(6): 1045–1051.

    Article  MathSciNet  MATH  Google Scholar 

  14. Piepmeier J, McMurray G, and Lipkin H, Uncalibrated dynamic visual servoing, IEEE Transactions on Robotics and Automation, 2004, 20(1): 143–147.

    Article  Google Scholar 

  15. Dixon W, Dawson D, and Zergeroglu E, Adaptive tracking control of a wheeled mobile robot via an uncalibrated camera system. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2001, 31(3): 341–352.

    Article  Google Scholar 

  16. Liu Y H, Wang H S, Wang C Y, and Lam K K, Uncalibrated visual servoing of robots using a depth-independent interaction matrix, IEEE Transactions on Robotics, 2006, 22(4): 804–817.

    Article  Google Scholar 

  17. Hu G, MacKunis W, Gans N, Dixon W, Chen J, Behal A, and Dawson D, Homography-based visual servo control with imperfect camera calibration, IEEE Transactions on Automatic Control, 2009, 54(6): 1318–1324.

    Article  MathSciNet  Google Scholar 

  18. Wang C L, Mei Y C, Liang Z Y, and Jia Q W, Dynamic feedback tracking control of nonholonomic mobile robots with unknown camera parameters, Transactions of the Institute of Measurement, 2010, 32(2): 155–169.

    Article  Google Scholar 

  19. Liang Z Y and Wang C L, Robust stabilization of nonholonomic chained form systems with uncertainties, Acta Automatica Sinica, 2011, 37(2): 129–142.

    MathSciNet  MATH  Google Scholar 

  20. Dorf R C and Bishop H R, Modern Control System, 4th Edition, Addison-Wesley, Publishing Company, 1986: 295–299.

    Google Scholar 

  21. Slotine J E and Li W P, Applied Nonlinear Control, Prensey-Hall, New Jersey, 1991.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenying Liang.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant Nos. 61374040, 61304004 and 61473179, and the Natural Science Foundation of Shandong Province under Grant Nos. ZR2013FM012 and ZR2014FM007.

This paper was recommended for publication by Editor HONG Yiguang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Wang, C. The Exponential Stabilization of Uncertain Chained Form Systems of Mobile Robots Based on Visual Servoing. J Syst Sci Complex 29, 315–335 (2016). https://doi.org/10.1007/s11424-015-4092-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-015-4092-2

Keywords

Navigation