Skip to main content
Log in

Relation between wiener numbers of quasi-hexagonal chains and quasi-polyomino chains

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

Let Q n and B n denote a quasi-polyomino chain with n squares and a quasi-hexagonal chain with n hexagons, respectively. In this paper, the authors establish a relation between the Wiener numbers of Q n and \( B_n :W(Q_n ) = \tfrac{1} {4}[W(B_n ) - \tfrac{8} {3}n^3 + \tfrac{{14}} {3}n + 3] \). And the extremal quasi-polyomino chains with respect to the Wiener number are determined. Furthermore, several classes of polyomino chains with large Wiener numbers are ordered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Gutman and S. Klavžar, Relations between Wiener numbers of benzenoid hydrocarbons and phenylenes, ACH-Models in Chemistry, 1998, 135(1/2): 45–55.

    Google Scholar 

  2. S. Klavžar, I. Gutman, and B. Mohar, Labeling of benzenoid systems which reflects the vertexdistance relations, J. Chem. Inf. Comput. Sci., 1995, 35: 590–593.

    Google Scholar 

  3. Ljiljana Pavloviĉ and Ivan Gutman, Wiener numbers of Phenylenes: An exact result, J. Chem. Inf. Comput. Sci., 1997, 37: 355–358.

    Google Scholar 

  4. L. Z. Zhang and F. J. Zhang, Extremal hexagonal chains concerning k-matchings and k-independent sets, Journal of Mathematical Chemistry, 2000, 27(4): 319–329.

    Article  MATH  MathSciNet  Google Scholar 

  5. Y. Q. Zeng and F. J. Zhang, Extremal polyomino chains on k-matchings and k-independent sets, J. Math. Chem., 2006.

  6. I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Speinger, Berlin, 1986.

    MATH  Google Scholar 

  7. F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood, 1990.

    MATH  Google Scholar 

  8. I. Gutman, Calculating the Wiener numbers of benzenoid hydrocarbons: Two theorems, Chem. Phys. Lett., 1987, 136: 134–136.

    Article  MathSciNet  Google Scholar 

  9. I. Gutman and O. E. Polansky, Wiener numbers of polyacenes and related benzenoid molecules, Commun. Math. Chem., 1986, 20: 115–123.

    MATH  MathSciNet  Google Scholar 

  10. A. A. Dobrynin, A simple formula for the calculation of the Wiener index of hexagonal chains, Comput. Chem., 1999, 23(1): 43–48.

    Article  Google Scholar 

  11. L. Q. Xu and X. F. Guo, Catacondensed hexagonal systems with large Wiener numbers, Math. Commun. Math. Comput. Chem., 2006, 55: 137–158.

    MATH  MathSciNet  Google Scholar 

  12. I. Gutman, J. W. Kenedy, and L. V. Quintas, Wiener numbers of random benzenoid chains, Chem. Phys. Lett., 1990, 173: 403–408.

    Article  Google Scholar 

  13. A. A. Dobrynin and I. Gutman, The average Wiener index of hexagonal chains, Comput. Chem., 1999, 23: 571–576.

    Article  MATH  Google Scholar 

  14. A. A. Dobrynin, I. Gutman, S. Klavžar, and P. Žigert, Wiener index of hexagonal systems, Acta Appl. Math., 2002, 72: 247–294.

    Article  MATH  MathSciNet  Google Scholar 

  15. I. Gutman, Topological properties of Benzenoid systems, Topics. Curr. Chem., 1992, 162: 1–28.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingfang Xie.

Additional information

This research is supported by the Natural Science Foundation of China under Grant No. 10371102.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, M., Zhang, F. Relation between wiener numbers of quasi-hexagonal chains and quasi-polyomino chains. J Syst Sci Complex 23, 873–882 (2010). https://doi.org/10.1007/s11424-010-7024-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-010-7024-1

Key words

Navigation